Design Patterns

C.K.Leng

‘Background

#® Gamma, Helm, Johnson, and Vlissides (the
“Gang of Four™) — Design Patterns, Elements
of Reusable Object-Oriented Software

This book solidified thinking about patterns
and became the seminal Design Patterns text

Software design patterns are based
(somewhat) on work by the architect
Christopher Alexander

Software Design Pattern

Purpose

@ A design pattern captures dgesign expertise —
patterns are not created from thin air, but
abstracted from existing design examples

Using design patterns is reuse of design
expertise

Studying design patterns is a way of studying
how the “experts” do design

@ Design patterns provide a vocabulary for
talking about design

~General Software Design Heuristics

Do the right things, then do the things right
@ Prevention is always better then cure

Minimize the impact of change

Maximize your freedom

Single assignment of responsibility

@ Loose Coupling

High Cohesion

@ Etc..

Software Design Pattern

100 key selling points

@®Abstraction
@®Encapsulation
@®Polymorphism
@®Inheritance

Why Design Patterns are Needed?

The one constant in software development

Okay, what’s the one thing you can always count on in software development?

No matter where you work, what vou're building, or what language you are programming in, what

the one true constant that will be »
n de

will be with vou always
WET me an

No matter howwell y sign an apphcation, «

L) - l Wl oo .)
apphication must grow and change or it will die encapsu ate it so it won 1
affect the rest of your code.

Take what varies and

The result? Fewer
unintended consequences
from code changes and more

Hovil;ilily in your c_ysl(\msf

Software Design Pattern

Why Design Patterns are Needed?

00 Printiples
what vanes

‘OO Principles

Identify the aspects of your application that vary and
separate them from what stays the same

Program to an interface, not an implementation
Favour composition over inheritance

Strive for loosely coupled designs between objects that
interact

Classes should be open for extension, but closed for
modification

Depend upon abstraction. Do not depend upon concrete
classes

@ Don't call us, we'll call you
A class should have only one reason to change

Software Design Pattern

Remember, knowing
concepts like abstraction,
inheritance, and polymorphism do
not make you a good object oriented
designer. A design guru thinks

about how to create flexible

designs that are maintainable
and that can cope with
change.

‘Structure of a pattern

Name

@ Intent

Motivation

@ Applicability

@ Structure

Consequences
Implementation
Known Uses

Related Patterns

Software Design Pattern

Key patterns

@ The following patterns are what
considered to be a good “basic” set of

design patterns

Competence in recognizing and
applying these patterns wi//improve

your low-level design skills

3 Categories
= Structural
= Behavioral
= Creational

Key Patterns

Abstract Factory
Chain of Responsibility
™ .-f: Builder
Command '\ J—
B Creational // Factory Method
interpreter - 4| T
=\ i,
W)
W \N_ Prototype
terator -,\-,‘l \ - -
™ '-.‘\'- \ - Singleton
Mediator -\ -
O) . Adapter
Memento \& Behavioral Design
y Patterns (GoF) Bridge
Observer Ve
/] Composite
state /i
e]
/ Structural Decorator
Strategy
_
Facade
Flyweight

Template Method ".l"

f
- / :."Il
/|
Visitor ;‘I
Proxy

Software Design Pattern n

Patterns

the holy behaviors

w
£
H
=

[=]
=

@
=
=

salopPnas Aoy ayy

{mi 28
18 B[of»

Understand Design Pattern
'Representation in UML

@ Class

@ Abstract Class

#Interface

@ Aggregation & Composition
@ Multiplicity

@ Association

#®Roles

Operations and Methods

Software Design Pattern

'UML Class Diagram Notation

Program element Diagram element ~ Meaning
Class Types and parameters specified when important; access indicated by
Class +(public), (private), and # (protected).
—attribute
+operation()

Interface , Name starts with I. Also used for abstract classes.
<<interface>>
IClass
+operation()
Note

Any descriptive text.
descriptive text

UML Class Diagram Notation (Cont.)

Program element Diagram element ~ Meaning

Package radoge | Grouping of classes and interfaces.
Package

Inheritance Binherits from A.

Realization Bimplements A.

m-aa> >

Software Design Pattern n

UML Class Diagram Notation (Cont.)

Program element Diagram element ~ Meaning

Association A g AandB call and access each other's elements.

Association (one way) A ~ B A can call and access B's elements, but not vice versa.
Aggregation A< g AhasaB,andB can outiiveA.
Composition L e p AhasaB,andB dependsonA.

Patterns vs "Design”

@ Patterns are design

= But: patterns transcend the “identify
classes and associations” approach to
design

= Instead: learn to recognize patterns in the
problem space and translate to the solution

@ Patterns can capture OO design
principles within a specific domain

@ Patterns provide structure to “design”

Software Design Pattern n

Patterns vs Frameworks

Patterns are lower-level than frameworks

€ Frameworks typically employ many patterns:
= Factory
= Strategy
= Composite
= Observer

Done well, patterns are the “plumbing” of a
framework

Patterns vs Architecture

Design Patterns (GoF) represent a lower level of
system structure than “architecture” (cf: seven levels
of A)

@ Patterns can be applied to architecture:
= Mowbray and Malveau
» Buschmann et a/
» Schmidt et a/

@ Architectural patterns tend to be focussed on
middleware. They are good at capturing:
= Concurrency
» Distribution
= Synchronization

Software Design Pattern

Why design patterns in
‘Software Architecture?

If you're a software engineer, you should
know about them anyway

There are many architectural patterns
published, and the GoF Design Patterns is a
prerequisite to understanding these:
= Mowbray and Malveau — CORBA Design Patterns
= Schmidt et al — Pattern-Oriented Software

Architecture

@ Design Patterns help you break out of first-

generation OO thought patterns

‘The seven layers of architecture™

Global architecture ? @ 9 OO architecture

Enterprise architecture ORB Subsystem
o O O

System architecture B %)

_— Frameworks

Application architecture

Macro-architecture

Design patterns

Micro-architecture —
-0 68

Objects —— O O O O OO0 programming

* Mowbray and Malveau

Software Design Pattern

Concluding remarks

Design Patterns (GoF) provide a foundation
for further understanding of:

= Object-Oriented design
= Software Architecture
Understanding patterns can take some time
= Re-reading them over time helps
= As does applying them in your own designs!

Software Design Pattern

Day 2: Creational Patterns

C.K.Leng

Creational Patterns

Purposes

Deal with object creation mechanisms, trying
to create objects in a manner suitable to the
situation.

The basic form of object creation could result
in design problems or added complexity to
the design. Creational design patterns solve
this problem by somehow controlling this
object creation.

Software Design Pattern

Creational Patterns

| _Pu rposes (Cont...)

Patterns whose sole purpose is to facilitate
the work of creating, initializing, and
configuring objects and classes.

These types of patterns are useful when we
need to render instances of objects, store
these objects, perform complex initialization
of objects, or create copies of objects.

Creational Patterns

Patterns

@ Abstract Factory

» Creates an instance of several families of classes
@ Builder

= Separates object construction from its representation
@ Factory Method

» Creates an instance of several derived classes

@ Prototype

= A fully initialized instance to be copied or cloned

®

@ Singleton
= A class of which only a single instance can exist

&

Software Design Pattern

Creational Patterns: Abstract Factory

UML: Abstract Factory

AbstractFactory

Client

(+CrealeProductAf)
+CreateProductB()

AbstractProductA

ConcreteFactory1 ConcreteFactory2
% ﬁl +CreateProductA() +CreateProductAf)
[+CreateProductB() HCreateProductB()
ProductA1 ProductA2 T T T
B |
< |
|
™ |

AbstractProductB

5z

ProductB1 ProductB2

__________ |

1 f L 1
Frequency of use: NI hiqh

Creational Patterns: Abstract Factory

Intent

#Provide an interface for creating
families of related or dependent objects
without specifying their concrete
classes.

A hierarchy that encapsulates: many
possible “platforms”, and the
construction of a suite of “products”.

#The new operator considered harmful.

Software Design Pattern

Creational Patterns: Abstract Factory

‘Role

This pattern supports the creation of products that
exist in families and are designed to be produced

together.

The abstract factory can be refined to concrete
factories, each of which can create different products

of different types and in different combinations.
The pattern isolates the product definitions and their
class names from the client so that the only way to
get one of them is through a factory. For this reason,
product families can easily be interchanged or
updated without upsetting the structure of the client.

Creational Patterns: Abstract Factory

‘Structure

The Abstract Factory defines a Factory Method per product. Each Factory
Method encapsulates the new operator and the concrete, platform-specific,

product classes. Each "platform” is then modeled with a Factory

derived class.
winterfaces
AbstractProductOne

Class1
N

/ | ProductO ne| [ProductOnePlatformTwo
winterfaces
AbstractPlatform
#interfaces
PlatformOne PlatformTweo AbstractProductTwo

—+makeProductOne()
| Two()
ProducTwoPlatformTwo

I
1 g e ————

I

1

return new Productonerlatformrwo(); 1
1

I

urn new ProductTwoPlatformTwo(); ﬁ

Software Design Pattern

Creational Patterns: Abstract Factory

‘Example

The purpose of the Abstract Factory is
to provide an interface for creating
families of related objects, without
specifying concrete classes.

This pattern is found in the sheet i {Ctlnt (pars ot for o]
metal stamping equipment used in the ELLLE
manufacture of Japanese automobiles. T
The stamping equipment is an Niodel3 Right Door [fWodes Lof Boor [iodei oed
Abstract Factory which creates auto [Medsiz RightDoor|] [Modeiz Lot Door || [Modeiz Hood ||
Model Right Door Maodel1 Loft Door Modell Hood

body parts. The same machinery is
used to stamp right hand doors, left
hand doors, right front fenders, left
front fenders, hoods, etc. for different
models of cars. Through the use of
rollers to change the stamping dies,
the concrete classes produced by the
machinery can be changed within
three minutes

Creational Patterns: Abstract Factory

Problem

If an application is to be portable, it needs to
encapsulate platform dependencies. These
“platforms” might include: windowing system,
operating system, database, etc.

Too often, this encapsulation is not
engineered in advance, and lots of #ifdef
case statements with options for all currently
supported platforms begin to procreate like
rabbits throughout the code.

Software Design Pattern

Creational Patterns: Abstract Factory

‘Discussion

Provide a level of indirection that abstracts the creation of families of
related or dependent objects without directly specifying their concrete
classes.

The “factory” object has the responsibility for providing creation
services for the entire platform family.

Clients never create platform objects directly, they ask the factory to
do that for them.

@ This mechanism makes exchanging product families easy because the
specific class of the factory object appears only once in the application
- where it is instantiated

4 The application can wholesale replace the entire family of products
simply by instantiating a different concrete instance of the abstract
factory.

Because the service provided by the factory object is so pervasive, it is
routinely implemented as a Singleton.

Creational Patterns: Abstract Factory

‘Rules of Thumb

4 Sometimes creational patterns are competitors: there are cases
when either Prototype or Abstract Factory could be used
profitably. At other times they are complementary: Abstract
Factory might store a set of Prototypes from which to clone and
return product objects, Builder can use one of the other
patterns to implement which components get built. Abstract
Factory, Builder, and Prototype can use Singleton in their
implementation.

@ Abstract Factory, Builder, and Prototype define a factory object
that's responsible for knowing and creating the class of product
objects, and make it a parameter of the system. Abstract
Factory has the factory object producing objects of several
classes.

Software Design Pattern

Creational Patterns: Abstract Factory

‘Rules of Thumb (Cont...)

Builder has the factory object building a complex product
incrementally using a correspondingly complex protocol.
Prototype has the factory object (aka prototype) building a
product by copying a prototype object.

Abstract Factory classes are often implemented with Factory
Methods, but they can also be implemented using Prototype.

@ Abstract Factory can be used as an alternative to Fagade to hide
platform-specific classes.

Creational Patterns: Abstract Factory

‘Rules of Thumb (Cont...)

@ Builder focuses on constructing a complex object step by step.
Abstract Factory emphasizes a family of product objects (either
simple or complex). Builder returns the product as a final step,
but as far as the Abstract Factory is concerned, the product gets
returned immediately.

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, more
complex) as the designer discovers where more flexibility is
needed.

Software Design Pattern

Creational Patterns: Abstract Factory

‘Known Uses

Use the Abstract Factory pattern when...

= A system should be independent of how its
products are created, composed, and represented.

= A system can be configured with one of multiple
families of products.

= The constraint requiring products from the same
factory to be used

Software Design Pattern

Creational Patterns: Builder

‘UML: Builaer

Director builder Builder

e ——

+Construct() +BuildPart()

f

foreach e in struciure B‘ ConcreteBuilder | - Product

bullder. BuildPari()

+BuildPart()
+GetResult()

1 4 3 4 5
Frequency of use: T medium low

Creational Patterns: Builder

Intent

@ Separate the construction of a complex
object from its representation so that
the same construction process can
create different representations.

#Parse a complex representation, create
one of several targets.

Software Design Pattern

Creational Patterns: Builder

‘Role

@ The Builder pattern separates the
specification of a complex object from
its actual construction. The same
construction process can create
different representations.

Creational Patterns: Builder

‘Structure

The Builder pattern is based on Directors and Builders. Any number of Builder
classes can conform to an IBuilder interface, and they can be called by a director
to produce a product according to specification. The builders supply parts that the
Product objects accumulate until the director is finished with the job. Suppose a
Director wants two of one kind of part and one of another. It would request them
from a Builder and pass them on to be added to the product’s list. The point about
the Builder pattern is that different builders can supply different (though
conforming) parts.

Client

—>

Director [Builder
+(onstruct(): Product [f>———————{ +BuildPart()
+GetResult() : Product

Invoke BuildPart Builder Product
asrequired +BuildPart() —parts - List
‘ +aetResult{) : Product T——

Software Design Pattern

Creational Patterns: Builder

‘Example

The Builder pattern separates the construction of a
complex object from its representation so that the
same construction process can create different

representations. Cust Cashi Rest o
This pattern is used by fast food restaurants to el o) Sy

construct children’s meals. Children’s meals
typically consist of a main item, a side item, a
drink, and a toy (e.g., a hamburger, fries, Coke,

Order Kad's Meal

Build '
and toy car). Build %&
Note that there can be variation in the content of B
the children’s meal, but the construction process is —E_s
the same. Build

R B
Whether a customer orders a hamburger,
cheeseburger, or chicken, the process is the same.| 4,; 1400
The employee at the counter directs the crew to
assemble a main item, side item, and toy. These
items are then placed in a bag. The drink is placed
in a cup and remains outside of the bag. This
same process is used at competing restaurants.

Creational Patterns: Builder

Problem

An application needs to create the
elements of a complex aggregate. The
specification for the aggregate exists on
secondary storage and one of many
representations needs to be built in
primary storage.

Software Design Pattern

Creational Patterns: Builder

Discussion

Separate the algorithm for interpreting (i.e. reading and parsing) a
stored persistence mechanism (e.g. RTF files) from the algorithm for
building and representing one of many target products (e.g. ASCII,
TeX, text widget). The focus/distinction is on creating complex
aggregates.

@ The “director” invokes “builder” services as it interprets the external
format. The “builder” creates part of the complex object each time it is
called and maintains all intermediate state. When the product is
finished, the client retrieves the result from the “builder”.

@ Affords finer control over the construction process. Unlike creational
patterns that construct products in one shot, the Builder pattern
constructs the product step by step under the control of the “director”.

Creational Patterns: Builder

‘Rules of Thumb

@ Sometimes creational patterns are complementary: Builder can
use one of the other patterns to implement which components
get built. Abstract Factory, Builder, and Prototype can use
Singleton in their implementations.

4 Builder focuses on constructing a complex object step by step.
Abstract Factory emphasizes a family of product objects (either
simple or complex). Builder returns the product as a final step,
but as far as the Abstract Factory is concerned, the product gets
returned immediately.

Software Design Pattern

Creational Patterns: Builder

‘Rules of Thumb (Cont...)

Builder often builds a Composite.

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, more
complex) as the designer discovers where more flexibility is
needed.

Creational Patterns: Builder

‘Known Uses

Use the Builder pattern when...
= The algorithm for creating parts is independent
from the parts themselves.
= The object to be assembled might have different
representations.
= You need fine control over the construction
process.

Software Design Pattern

Creational Patterns: Builder

Pattern Comparison

The Builder and Abstract Factory patterns are similar in that they
both look at construction at an abstract level. However, the
Builder pattern is concerned with how a single object is made up
by the different factories, whereas the Abstract Factory pattern is
concerned with what products are made. The Builder pattern
abstracts the algorithm for construction by including the concept
of a director. The director is responsible for itemizing the steps
and calls on builders to fulfill them. Directors do not have to
conform to an interface.

A further elaboration on the theme of creating products is that
instead of the client explicitly declaring fields of type ProductA and
ProductB, say, the Product object the builder returns is actually a
list of parts, which can have different lengths and contents
depending on the director that was in charge at its creation.

Creational Patterns: Factory Method

‘UML: Factory Method

Product Creator
+FactoryMethod() — —— - product = FactoryMethod()
[f +AnOperation()
ConcreteProduct ConcreteCreator
<_ S
+FactoryMethod() — -+ — 4 return new ConcreteProduct

Frecuency of use MMM

Software Design Pattern

Creational Patterns: Factory Method

Intent

Defer object instantiation to subclasses
Eliminates binding of application-specific subclasses
Connects parallel class hierarchies

Define an interface for creating an object, but let subclasses
decide which class to instantiate. Lets a class defer instantiation
to subclasses.

Product Creator
operation() Product createProduct{)
ConcreteProduct [« ConcreteCreator
operation() Product createProduct() (-

| return new ConcreteProduct(); \J

Creational Patterns: Factory Method

‘Role

The Factory Method pattern is a way of
creating objects, but letting subclasses decide
exactly which class to instantiate.

Various subclasses might implement the
interface; the Factory Method instantiates the
appropriate subclass based on information
supplied by the client or extracted from the
current state.

Software Design Pattern

Creational Patterns: Factory Method

Structure

w1

The implementation of Factory Method discussed in the Gang of Four
(below) largely overlaps with that of Abstract Factory. For that
reason, the presentation here focuses on the approach that has
become popular since.

winterface»
Framework

+makeProduct) : Product

[T]

A ApplicationOne ApplicationTwo

+makeProduct() : Product H+makeProduct() : Product
I

retum new ProductOne(); Iﬁ

Creational Patterns: Factory Method

Structure (Cont...)

@ An increasingly popular definition of factory method is: a static method of a
class that returns an object of that class’ type. But unlike a constructor, the
actual object it returns might be an instance of a subclass. Unlike a
constructor, an existing object might be reused, instead of a new object
created. Unlike a constructor, factory methods can have different and more
descriptive names (e.g. Color.make_RGB_color(float red, float green, float
blue) and Color.make_HSB_color(float hue, float saturation, float brightness)

«interface»
Product Evaluate arguments
static makeProduct() - Product |- — — { 2nd decide which derived
object to create and retum.

Y

Software Design Pattern

Creational Patterns: Factory Method

‘Structure (Cont...)

@ The client is totally decoupled from the implementation details
of derived classes. Polymorphic Creation is now possible.

<<interface>>

product = IProduct
creator. FactoryMethod()

Client ’ !

product : IProduct ProductA I ProductB I

Creational Patterns: Factory Method

'Example

@ The Factory Method defines an interface for creating objects, but
lets subclasses decide which classes to instantiate. Injection
molding presses demonstrate this pattern. Manufacturers of plastic
toys process plastic molding powder, and inject the plastic into
molds of the desired shapes. The class of toy (car, action figure,
etc.) is determined by the mold.

InjectionMold

tinject()

A
l |

ToyDinosaurMold ToyCarMold

+Inject() .2 +Hinject() ‘

Software Design Pattern

Creational Patterns: Factory Method

‘Example (Cont...)

Creating manipulators on connectors:

Interactor

0..1
Figure Manipulator

createManipulator() attach(Figure)

T T

| | | |
RectFigure Connector | BoundsManipulator| |ArcManipulator
createManipuIator()Q createManipulator()} | attach(Figure) attach(Figure)

----{ manip = new ArcManipulator(); "\

- { manip = new BoundsManipulator();\|

Creational Patterns: Factory Method

Problem

A framework needs to standardize the
architectural model for a range of
applications, but allow for individual
applications to define their own domain
objects and provide for their
instantiation.

Software Design Pattern

Creational Patterns: Factory Method

Discussion

@ Factory Method is to creating objects as Template Method is to
implementing an algorithm. A superclass specifies all standard and
generic behavior (using pure virtual “placeholders” for creation
steps), and then delegates the creation details to subclasses that
are supplied by the client.

Factory Method makes a design more customizable and only a little
more complicated. Other design patterns require new classes,
whereas Factory Method only requires a new operation.

People often use Factory Method as the standard way to create
objects; but it isn't necessary if: the class that's instantiated never
changes, or instantiation takes place in an operation that
subclasses can easily override (such as an initialization operation).

@ Factory Method is similar to Abstract Factory but without the
emphasis on families.

Creational Patterns: Factory Method

‘Rules of Thumb

#® Abstract Factory classes are often implemented with
Factory Methods, but they can be implemented using
Prototype.

@ Factory Methods are usually called within Template
Methods.

@ Factory Method: creation through inheritance.
Prototype: creation through delegation.

Often, designs start out using Factory Method (less
complicated, more customizable, subclasses proliferate)
and evolve toward Abstract Factory, Prototype, or
Builder (more flexible, more complex) as the designer
discovers where more flexibility is needed.

Software Design Pattern

Creational Patterns: Factory Method

‘Rules of Thumb (Cont...)

@ Prototype doesn't require subclassing, but it does
require an Initialize operation. Factory Method
requires subclassing, but doesn't require Initialize.

The advantage of a Factory Method is that it can
return the same instance multiple times, or can
return a subclass rather than an object of that exact

type.

#® Some Factory Method advocates recommend that as
a matter of language design (or failing that, as a
matter of style) absolutely all constructors should be
private or protected. It's no one else’s business
whether a class manufactures a new object or
recycles an old one.

Creational Patterns: Factory Method

‘Rules of Thumb (Cont...)

The new operator considered harmful. There is a

difference between requesting an object and creating
one.

The new operator always creates an object, and fails
to encapsulate object creation.

@ A Factory Method enforces that encapsulation, and
allows an object to be requested without inextricable
coupling to the act of creation.

Software Design Pattern

Creational Patterns: Factory Method

‘Known Uses

Use the Factory Method pattern when...
= Flexibility is important.
= Objects can be extended in subclasses

= There is a specific reason why one subclass would
be chosen over another—this logic forms part of

the Factory Method.

= A client delegates responsibilities to subclasses in
parallel hierarchies.

Creational Patterns: Prototype

Client | o oionpe

‘UML: Prototype

Prototype

+Operation() .

|
1
p=profotype Clone() B‘

+Clone()

T T

iConcretePrototype1

+Clone()

return copy of this [j

ConcretePrototype2

+Clone() |

|
1

return copy of this ﬁ

1 2 3 4% &
Frequency of use NI medium

Software Design Pattern

Creational Patterns: Prototype

Intent

@ Specify the kinds of objects to create
using a prototypical instance, and
create new objects by copying this
prototype.

Co-opt one instance of a class for use
as a breeder of all future instances.

The new operator considered harmful.

Creational Patterns: Prototype

‘Role

The Prototype pattern creates new objects by
cloning one of a few stored prototypes.

The Prototype pattern has two advantages:

= It speeds up the instantiation of very large,
dynamically loaded classes (when copying objects
is faster)

= It keeps a record of identifiable parts of a large

data structure that can be copied without knowing
the subclass from which they were created.

Software Design Pattern

Creational Patterns: Prototype

Structure

@ The Factory knows how to find the correct Prototype, and
each Product knows how to spawn new instances of itself.

each Image derived class
registering an instance of itself
T
I

1 - doneRegistry

donerRegistry is populated IT

ImageHandler Image
- images
[+populatelmages() () : Image
T
:
ImageOne ImageTwo
Images[next] =
clonerRegisiry get{lookupkey).clone(); rclone() : ImageOne
T

return new ImageOne(this); lj

Creational Patterns: Prototype

Example

The Prototype pattern specifies the kind of objects to create using a
prototypical instance. Prototypes of new products are often built
prior to full production, but in this example, the prototype is passive
and does not participate in copying itself. The mitotic division of a
cell - resulting in two identical cells - is an example of a prototype
that plays an active role in copying itself and thus, demonstrates the
Prototype pattern. When a cell splits, two cells of identical genotvpe
result. In other words, the cell clones itself.

Cell

Spit)

|Sinﬂ000IIOmanilm

+Split(}

-

Software Design Pattern

Creational Patterns: Prototype

Problem

@ Application “hard wires” the class of
object to create in each “new”
expression.

Creational Patterns: Prototype

Discussion

Declare an abstract base class that specifies a pure
virtual “clone” method, and, maintains a dictionary of
all “cloneable” concrete derived classes. Any class
that needs a “polymorphic constructor” capability:
derives itself from the abstract base class, registers

its prototypical instance, and implements the clone()
operation.

The client then, instead of writing code that invokes
the “new” operator on a hard-wired class nhame, calls
a “clone” operation on the abstract base class,
supplying a string or enumerated data type that

designates the particular concrete derived class
desired.

Software Design Pattern

Creational Patterns: Prototype

‘Rules of Thumb

Sometimes creational patterns are competitors: there
are cases when either Prototype or Abstract Factory
could be used properly. At other times they are
complementory: Abstract Factory might store a set of
Prototypes from which to clone and return product
objects. Abstract Factory, Builder, and Prototype can
use Singleton in their implementations.

Abstract Factory classes are often implemented with
Factory Methods, but they can be implemented using
Prototype.

@ Factory Method: creation through inheritance.
Protoype: creation through delegation.

Creational Patterns: Prototype

‘Rules of Thumb (Cont...)

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward
Abstract Factory, Protoype, or Builder (more flexible, more
complex) as the designer discovers where more flexibility is
needed.

Prototype doesn't require subclassing, but it does require an
“initialize” operation. Factory Method requires subclassing, but
doesn’t require Initialize.

Designs that make heavy use of the Composite and Decorator
patterns often can benefit from Prototype as well.

Prototype co-opts one instance of a class for use as a breeder of
all future instances.

Software Design Pattern

Creational Patterns: Prototype

‘Rules of Thumbs (Cont...)

@ Prototypes are useful when object initialization is
expensive, and you anticipate few variations on the
initialization parameters. In this context, Prototype
can avoid expensive “creation from scratch”, and
support cheap cloning of a pre-initialized prototype.

@ Prototype is unique among the other creational
patterns in that it doesn’t require a class — only an
object. Object-oriented languages like Self and
Omega that do away with classes completely rely on
prototypes for creating new objects.

Creational Patterns: Prototype

‘Known Uses

Use Prototype pattern when you want to:
a Hide concrete classes from the client.

= Add and remove new classes (via prototypes) at
runtime.

= Keep the number of classes in the system to a
minimum.

= Adapt to changing structures of data at runtime.

Software Design Pattern

Creational Patterns: Singleton

UML: Singleton

Singleton

-instance : Singleton

-Singleton()
+Instance() : Singleton

1 2 3 4 &
Frequency of use. NN medium high

Creational Patterns: Singleton

Intent

#®Ensure a class has only one instance,
and provide a global point of access to
it.

Encapsulated “just-in-time initialization”
or “initialization on first use”.

Software Design Pattern

Creational Patterns: Singleton

‘Role

The purpose of the Singleton pattern is to ensure
that there is only one instance of a class, and that
there is a global access point to that object.

The pattern ensures that the class is instantiated only
once and that all requests are directed to that one
and only object. Moreover, the object should not be
created until it is actually needed.

In the Singleton pattern, it is the class itself that is
responsible for ensuring this constraint, not the
clients of the class.

Creational Patterns: Singleton

Structure

@ The Singleton pattern adds functionality by modifying an existing
class. The modifications required are:

* Make the constructor private and add a private static constructor
as well.

¢ Add a private static read-only object that is internally instantiated
using the private constructor.

¢ Add a public static property that accesses the private object.

Singleton
—static uniguelnstance : Singleton = new Singleton()
=Singleton()

—static readonly Singleton() It
+static Instance() : Singleton - - - - - - - - == - -

Software Design Pattern

Creational Patterns: Singleton

‘Example

The Singleton pattern ensures that a class has only one instance and
provides a global point of access to that instance. It is named after the
singleton set, which is defined to be a set containing one element. The
office of the President of the United States is a Singleton. The United
States Constitution specifies the means by which a president is elected,
limits the term of office, and defines the order of succession. As a result,
there can be at most one active president at any given time. Regardless
of the personal identity of the active president, the title, “The President of
the United States” is a global point of access that identifies the person in

the office. ‘
ﬁ'- Goverment

+Election() : Goverment
T

Retum unique instance [j

Creational Patterns: Singleton

Problem

@ Application needs one, and only one,
instance of an object. Additionally, lazy
initialization and global access are
necessary.

Software Design Pattern

Creational Patterns: Singleton

Discussion

Make the class of the single instance object responsible for
creation, initialization, access, and enforcement. Declare the
instance as a private static data member. Provide a public static
member function that encapsulates all initialization code, and
provides access to the instance.

The client calls the accessor function (using the class name and
scope resolution operator) whenever a reference to the single
instance is required.

Singleton should be considered only if all three of the following
criteria are satisfied:

+Ownership of the single instance cannot be reasonably assigned
+Lazy initialization is desirable
+Global access is not otherwise provided for

Creational Patterns: Singleton

‘Discussion (Cont...)

@ If ownership of the single instance, when and how
initialization occurs, and global access are not issues,
Singleton is not sufficiently interesting.

@ The Singleton pattern can be extended to support
access to an application-specific number of instances.

@ The “static member function accessor” approach will
not support subclassing of the Singleton class. If
subclassing is desired, refer to the discussion in the
book.

Deleting a Singleton class/instance is a non-trivial
design problem. See “To Kill A Singleton” by John
Vlissides for a discussion

Software Design Pattern

Creational Patterns: Singleton

‘Rules of Thumb

@ Abstract Factory, Builder, and Prototype can use
Singleton in their implementation.

@ Facade objects are often Singletons because only one
Facade object is required.

State objects are often Singletons.

The advantage of Singleton over global variables is
that you are absolutely sure of the number of
instances when you use Singleton, and, you can
change your mind and manage any number of
instances.

Creational Patterns: Singleton

‘Rules of Thumb (Cont...)

The Singleton design pattern is one of the most
inappropriately used patterns. Singletons are
intended to be used when a class must have exactly
one instance, no more, no less.

@ Designers frequently use Singletons in a misguided
attempt to replace global variables.

A Singleton is, for intents and purposes, a global
variable. The Singleton does not do away with the
global; it merely renames it.

Software Design Pattern

Creational Patterns: Singleton

‘Rules of Thumb (Cont...)

@ When is Singleton unnecessary? Short answer: most of the time. Long
answer: when it's simpler to pass an object resource as a reference to
the objects that need it, rather than letting objects access the resource
globally. The real problem with Singletons is that they give you such a
good excuse not to think carefully about the appropriate visibility of an
object. Finding the right balance of exposure and protection for an
object is critical for maintaining flexibility.

4 Our group had a bad habit of using global data, so I did a study group
on Singleton. The next thing I know Singletons appeared everywhere
and none of the problems related to global data went away. The
answer to the global data question is not, "Make it a Singleton.” The
answer is, "Why in the hell are you using global data?” Changing the
name doesn’t change the problem. In fact, it may make it worse

because it gives you the opportunity to say, "Well I'm not doing that,
I'm doing this” — even though this and that are the same thing.

Creational Patterns: Singleton

Known Uses

Use the Singleton pattern when ...

= You need to ensure there is only one instance of a
class.

= Controlled access to that instance is essential.

= You might need more than one instance at a later
stage.

= The control should be localized in the instantiated
class, not in some other mechanism.

Software Design Pattern

Day 3: Structural Patterns

C.K.Leng

Structural Patterns

Purposes

In Software Engineering, Structural Design
Patterns are Design Patterns that ease the
design by identifying a simple way to realize
relationships between entities.

Software Design Pattern

Structural Patterns

Patterns

@ Adapter: Match interfaces of different classes

@ Bridge: Separates an object’s interface from its implementation
@ Composite: A tree structure of simple and composite objects
@ Decorator: Add responsibilities to objects dynamically

@ Facgade: A single class that represents an entire subsystem
® Flyweight: A fine-grained instance used for efficient sharing
@ Proxy: An object representing another object

&

Structural Patterns

‘Comparison

@ Many patterns are structurally similar, if not identical.
What you need to understand is where, how, and
when to use it.

Software Design Pattern

Structural Patterns

‘Comparison (Cont...)

@ For example (Proxy Vs Facade):

= Structurally they are similar where you have the proxy /
Facade object in the front talking with the real
[domain|implementataion|whatever] object at the back. This
similarity also shared with Adaptor and Decorator pattern.

= Proxy: typically to provide specific functionality that the
user should not care or need to know the detail about. Some
example: EJB proxy object, Spring transaction object, some
of the AOP implementation use of proxy.

= Facade: On the other hand, Fagade is providing a different
front or direct interface to the user. The purpose is to give a
consistent or easier API for user to use without knowing the
specific of how the overall implementation in the back end is
handled.

Structural Patterns

‘Comparison (Cont...)

@ For example: (Adapter Vs Bride)

= Adapter: is used when two incompatible interfaces have to
be unified together, ie., adapter is a result of existing
incompatibilities.

= Bride: is something we use when we actually need to
separate interface from implementation. Varying types of
implementation is one reason.

Software Design Pattern

Structural Patterns

‘Comparison (Cont...)

@ For example: (Adapter Vs Proxy)

= The proxy pattern is very similar in concept to the adapter
pattern - it provides a common API for multiple objects
which could be varying in nature.

= In general, the difference between the proxy and adapter

pattern is you design your proxy first, the intention from the
start being all client objects will use only the proxy API.

Structural Patterns: Adapter

Client | 100y

‘UML: Adapter

Target

+Request()

[

Adapter

adaplee

Adaptee

+Request() |

adaptee SpecificRequest() Ij

+SpecificRequest()

1 2 3 4 §
Fraquancy of use: NN rmedium high

Software Design Pattern

Structural Patterns: Adapter

Intent

Convert the interface of a class into
another interface clients expect.
Adapter lets classes work together that
couldn’t otherwise because of
incompatible interfaces.

#Wrap an existing class with a new
interface.

#®Impedance match an old component to
a new system

Structural Patterns: Adapter

‘Role

@ The Adapter pattern enables a system to use classes
whose interfaces don't quite match its requirements.
It is especially useful for off-the-shelf code, for
toolkits, and for libraries.

€ Many examples of the Adapter pattern involve
input/output because that is one domain that is
constantly changing. For example, programs written
in the 1980s will have very different user interfaces
from those written in the 2000s. Being able to adapt
those parts of the system to new hardware facilities
would be much more cost effective than rewriting
them.

Software Design Pattern

Structural Patterns: Adapter

‘Role (Cont...)

Toolkits also need adapters. Although they are designed for
reuse, not all applications will want to use the interfaces that
toolkits provide; some might prefer to stick to a well-known,
domain-specific interface. In such cases, the adapter can accept
calls from the application and transform them into calls on
toolkit methods.

Structural Patterns: Adapter

‘Structure

Below, a legacy Rectangle component’s display() method expects to receive
"X, y, w, h” parameters. But the client wants to pass “upper left x and y” and
“lower right x and y”. This incongruity can be reconciled by adding an
additional level of indirection — i.e. an Adapter object.

Client winterfaces
Shape
in %1, in y1, in x2, in y2)

i

Rectangl «adaptees
LegacyRectangle

[+display(in x1, in y1, in %2, in y2)
I

display(in x1, in y1, in x2, in y2)

I
]
1

Delegate and map to adaptee Ij

Software Design Pattern

Structural Patterns: Adapter

‘Structure (Cont...)

@ The Adapter could also be thought of as a

“wrapper”.
NewApplication Wrapper
+doThis() [~~~ 7] theWrappedOne.doThal(); Ij
LegacyComponent
+doThatl)

Structural Patterns: Adapter

‘Example

The Adapter pattern allows otherwise incompatible classes to work together by
converting the interface of one class into an interface expected by the clients.
Socket wrenches provide an example of the Adapter. A socket attaches to a
ratchet, provided that the size of the drive is the same. Typical drive sizes in the
United States are 1/2” and 1/4". Obviously, a 1/2" drive ratchet will not fit into a
1/4” drive socket unless an adapter is used. A 1/2" to 1/4” adapter has a 1/2"

female connection to fit on the 1/2" drive ratchet, and a 1/4” male connection to
fit in the 1/4" drive socket.

Ratchet
1/2" Drive (male)

Socket Adiw
&y [T femare) (44 Ditve (rnale;e}

Software Design Pattern

Structural Patterns: Adapter

Problem

@ An "off the shelf” comp ‘:

compelling functionality that you would
like to reuse, but its “view of the world”
is not compatible with the philosophy
and architecture of the system currently
being developed.

Structural Patterns: Adapter

‘Discussion

Reuse has always been painful and elusive. One reason has been the
tribulation of designing something new, while reusing something old.
There is always something not quite right between the old and the
new. It may be physical dimensions or misalignment. It may be timing
or synchronization. It may be unfortunate assumptions or competing
standards.

@ Itis like the problem of inserting a new three-prong electrical plug in
an old two-prong wall outlet — some kind of adapter or intermediary is
necessary.

@ Adapter is about creating an intermediary abstraction that translates,
or maps, the old component to the new system. Clients call methods
on the Adapter object which redirects them into calls to the legacy
component. This strategy can be implemented either with inheritance
or with aggregation.

4 Adapter functions as a wrapper or modifier of an existing class. It
provides a different or translated view of that class.

Software Design Pattern

Structural Patterns: Adapter

‘Rules of Thumb

@ Adapter makes things work after they're designed;
Bridge makes them work before they are.

Bridge is designed up-front to let the abstraction and
the implementation vary independently. Adapter is
retrofitted to make unrelated classes work together.

@ Adapter provides a different interface to its subject.

Proxy provides the same interface. Decorator
provides an enhanced interface.

Structural Patterns: Adapter

‘Rules of Thumb (Cont...)

Adapter is meant to change the interface of an
existing object. Decorator enhances another object
without changing its interface. Decorator is thus
more transparent to the application than an adapter
is. As a consequence, Decorator supports recursive
composition, which isn't possible with pure Adapters.

@ Facade defines a new interface, whereas Adapter
reuses an old interface. Remember that Adapter
makes two existing interfaces work together as
opposed to defining an entirely new one.

Software Design Pattern

Structural Patterns: Adapter

= You have:

‘Known Uses

Use the Adapter pattern when...

+ A domain-specific interface.
+ A class to connect to with a mismatching interface.

= You want to:

+ Create a reusable class to cooperate with yet-to-be-built

classes.

+ Change the names of methods as called and as

implemented.

Structural Patterns: Bridge

Client

Abstraction | implementor

‘UML: Briage

Implementor

<

+Operation()

~
~

+OperationIimp()

implementor Operationimpy() lj

T

[RefinedAbstraction

T

[ConcretelmplementorA

iConcretelmplementorB

+Operationlmp()

+Operationlmp()

1 2 3 4 B
Frequency of use. NI medium

Software Design Pattern

Structural Patterns: Bridge

Intent

Decouple an abstraction from its
implementation so that the two can
vary independently.

@ Publish interface in an inheritance
hierarchy, and bury implementation in
its own inheritance hierarchy.

#Beyond encapsulation, to insulation

Structural Patterns: Bridge

‘Role

@ The Bridge pattern decouples an abstraction
from its implementation, enabling them to vary
independently.

The Bridge pattern is useful when a new version
of software is brought out that will replace an
existing version, but the older version must still
run for its existing client base.

@ The client code will not have to change, as it is
conforming to a given abstraction, but the client
will need to indicate which version it wants to
use.

Software Design Pattern

Structural Patterns: Bridge

Structure

@ The Client doesn't want to deal with platform-dependent details. The Bridge
pattern encapsulates this complexity behind an abstraction “wrapper”.

Client
Bridge emphasizes identifying
and decoupling “interface”
abstraction from “implementation” [ierfaceE) InterfaceEncapsulation
abstraction.
: [FdoThisOnel)
=" ~{tdeThis0 +doThisTwed)
[? ‘#‘
I 1 o« i ol "
: Inter F ol r——— imph fonTwo
I
! FrdoThisOne()
: L doThisTwo()
1

thelmplement doThisOnef);
thelmplement doThisTwo();

Structural Patterns: Bridge

Example

The Bridge pattern decouples an abstraction from its implementation, so
that the two can vary independently. A household switch controlling
lights, ceiling fans, etc. is an example of the Bridge. The purpose of the
switch is to turn a device on or off. The actual switch can be
implemented as a pull chain, simple two position switch, or a variety of
dimmer switches.

| Bridge :
: Switch Switchimplementation| |
I

I)
I EoNp H-ON() :
: LOFF() L OFF() I
R S, I
o— [| |

Software Design Pattern

Structural Patterns: Bridge

Problem

#"Hardening of the software arteries” has
occurred by using subclassing of an
abstract base class to provide
alternative implementations.

#This locks in compile-time binding
between interface and implementation.
The abstraction and implementation
cannot be independently extended or
composed.

Structural Patterns: Bridge

Motivation
Consider the domain of “thread scheduling”.
ThreadScheduler
A
[Pm«npﬂvﬂh:aadsmedular] [ﬂnnSIIeedTl'llaadeudulerI
| unixpTs | [WindowsPTS | [UnixTsTS | |WindowsTSTS |

There are two types of thread schedulers, and two types of
operating systems or “platforms”. Given this approach to
specialization, we have to define a class for each permutation
of these two dimensions. If we add a new platform (say ...
Java’s Virtual Machine), what would our hierarchy look like?

Software Design Pattern

Structural Patterns: Bridge

‘Motivation (Cont...)

What if we had three kinds of thread schedulers, and four kinds
of platforms? What if we had five kinds of thread schedulers,
and ten kinds of platforms? The number of classes we would
have to define is the product of the number of scheduling
schemes and the number of platforms.

A

|Praempllve111:nnd8chadulnr | |1'ime$lood1'l‘t;nds:hedl.|lar |

[I I |

| unixpTs | [WindowsPTS | | UnixTsTs | |WindowsTSTS |

(775] (w75 |

Structural Patterns: Bridge

‘Motivation (Cont...)

4 The Bridge design pattern proposes refactoring this exponentially
explosive inheritance hierarchy into two orthogonal hierarchies —
one for platform-independent abstractions, and the other for
platform-dependent implementations.

|‘I'Ilroad$chaduln' }
—]
Immmnadsm-duhrl |Thread8cl'|edular_lmplenmtallon |
[TimeSlicedThreadScheduler | | |
| UnixPTS | |WindowsPTS |
JVM_PTS

Software Design Pattern

Structural Patterns: Bridge

Discussion

@ Decompose the component’s interface and implementation into
orthogonal class hierarchies. The interface class contains a
pointer to the abstract implementation class. This pointer is
initialized with an instance of a concrete implementation class,
but all subsequent interaction from the interface class to the
implementation class is limited to the abstraction maintained in
the implementation base class. The client interacts with the
interface class, and it in turn “delegates” all requests to the
implementation class.

@ The interface object is the “handle” known and used by the
client; while the implementation object, or “"body”, is safely
encapsulated to ensure that it may continue to evolve, or be
entirely replaced (or shared at run-time.)

Structural Patterns: Bridge

‘Discussion (Cont...)

Consequences include:
» Decoupling the object’s interface

= Improved extensibility (you can extend (i.e.
subclass) the abstraction and implementation
hierarchies independently)

= Hiding details from clients

Software Design Pattern

Structural Patterns: Bridge

Discussion (Cont...)

Bridge is a synonym for the “handle/body” idiom.
This is a design mechanism that encapsulates an
implementation class inside of an interface class.

#® The former is the body, and the latter is the handle.
The handle is viewed by the user as the actual class,
but the work is done in the body. “The handle/body
class idiom may be used to decompose a complex
abstraction into smaller, more manageable classes.

The idiom may reflect the sharing of a single
resource by multiple classes that control access to it
(e.g. reference counting).”

Structural Patterns: Bridge

‘Rules of Thumb

@ Adapter makes things work after they're designed;
Bridge makes them work before they are.

Bridge is designed up-front to let the abstraction and
the implementation vary independently. Adapter is
retrofitted to make unrelated classes work together.

State, Strategy, Bridge (and to some degree Adapter)
have similar solution structures. They all share
elements of the “handle/body” idiom. They differ in
intent - that is, they solve different problems.

Software Design Pattern m

Structural Patterns: Bridge

‘Rules of Thumb (Cont...)

@ The structure of State and Bridge are identical
(except that Bridge admits hierarchies of envelope
classes, whereas State allows only one). The two
patterns use the same structure to solve different
problems: State allows an object’s behavior to
change along with its state, while Bridge's intent is to
decouple an abstraction from its implementation so
that the two can vary independently.

If interface classes delegate the creation of their
implementation classes (instead of creating/coupling
themselves directly), then the design usually uses the
Abstract Factory pattern to create the implementation
objects.

Structural Patterns: Bridge

‘Known Uses

Use the Bridge pattern when...

= You can:
+ Identify that there are operations that do not always need to
be implemented in the same way.
= You want to:
+ Completely hide implementations from clients.
+ Avoid binding an implementation to an abstraction directly.

+ Change an implementation without even recompiling an
abstraction.

+ Combine different parts of a system at runtime.
+ you want run-time binding of the implementation.

+ you have a proliferation of classes resulting from a coupled
interface and numerous implementations.

+ you want to share an implementation among multiple objects.
+ you need to map orthogonal class hierarchies

Software Design Pattern

Structural Patterns: Composite

UML: Composite

Client

Component

+Operation()

i+Add(in Component)
+Remove(in Component)
HGatChild(in index - int)

o

Leaf Composite Children
e
1

+Operation() +Operation() |
H+Add(in Component) |

+Remove(in Companent) |

+GetChild(in index : int) |

|

|

foreach child in children
child.Operation()

Frequency of use [N medium high

Structural Patterns: Composite

Intent

Compose objects into tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Recursive composition
Easier to add new kinds of components

0..*
Client » Component
Operation()
Add(Component)
Remove(Component)
$ children
| |
Leaf Composite >
Operation() Operation()
Add(Component) :
Remove{Companent) For all ¢ in children

¢.Operation();

Software Design Pattern

Structural Patterns: Composite

Structure

Composites that contain
Components, each of which could
be a Composite.

Menus that contain menu items,
each of which could be a menu.

Row-column GUI layout managers
that contain widgets, each of
which could be a row-column GUI
layout manager.

Directories that contain files, each
of which could be a directory.

Containers that contain Elements,

each of which could be a
Container.

Structural Patterns: Composite

Example

The Composite composes objects into tree structures and lets clients
treat individual objects and compositions uniformly. Although the
example is abstract, arithmetic expressions are Composites. An
arithmetic expression consists of an operand, an operator (+ - * /), and
another operand. The operand can be a number, or another arithmetic
expression. Thus, 2 + 3 and (2 + 3) + (4 * 6) are both valid

winterfacen
Component
YdoThis()
Leaf Composite -elements
+addEl :
FdoThis)) A 1

for each element

'l
/lcontainer functionality
elements(i]. doThis();

expressions.

ArithmeticExpression
+ H) “
+ -()
-0 .
)] aN
2 -
/\
| | 3 5
NumericOperand CompositeOperand

Software Design Pattern

Structural Patterns: Composite

‘Example (Cont...)

Figures in a structured graphics toolkit:

Controller
| 0.+ 0.+
View — Figure
children
paint()
translate()
getBounds()

[[I
LabelFigure ||BasicFigure| |CompositeFigure > parent

paint() paint() paint()
addFigure(Figure))
removeFigure(Figure))

For all c in children
c.paint();

Structural Patterns: Composite

‘Role

#®The Composite pattern arranges
structured hierarchies so that single
components and groups of components
can be treated in the same way. Typical
operations on the components include
add, remove, display, find, and group.

Software Design Pattern

Structural Patterns: Composite

Problem

@ Application needs to manipulate a
hierarchical collection of “primitive” and
“composite” objects. Processing of a
primitive object is handled one way,
and processing of a composite object is
handled differently. Having to query the
“type” of each object before attempting
to process it is not desirable.

Structural Patterns: Composite

Discussion

@ Define an abstract base class (Component) that specifies the behavior
that needs to be exercised uniformly across all primitive and composite
objects. Subclass the Primitive and Composite classes off of the
Component class. Each Composite object “couples” itself only to the
abstract type Component as it manages its “children”.

@ Use this pattern whenever you have “composites that contain
components, each of which could be a composite”.

4 Child management methods [e.g. addChild(), removeChild()] should
normally be defined in the Composite class. Unfortunately, the desire
to treat Primitives and Composites uniformly requires that these
methods be moved to the abstract Component class. See the
“Opinions” section below for a discussion of “safety” versus
“transparency” issues.

Software Design Pattern

Structural Patterns: Composite

‘Rules of Thumb

Composite and Decorator have similar structure
diagrams, reflecting the fact that both rely on
recursive composition to organize an open-ended
number of objects.

@ Composite can be traversed with Iterator. Visitor can
apply an operation over a Composite. Composite
could use Chain of Responsibility to let components
access global properties through their parent. It
could also use Decorator to override these properties
on parts of the composition. It could use Observer to
tie one object structure to another and State to let a
component change its behavior as its state changes.

Structural Patterns: Composite

‘Rules of Thumb (Cont...)

@ Composite can let you compose a Mediator out of
smaller pieces through recursive composition.

@ Decorator is designed to let you add responsibilities
to objects without subclassing. Composite’s focus is
not on embellishment but on representation. These
intents are distinct but complementary.
Consequently, Composite and Decorator are often
used in concert.

@ Flyweight is often combined with Composite to
implement shared leaf nodes.

Software Design Pattern m

Structural Patterns: Composite

Known Uses

Use the Composite pattern when...

= You have:
+ An irregular structure of objects and composites of the
objects
= You want:

+ Clients to ignore all but the essential differences between
individual objects and composites of objects

+ To treat all objects in a composite uniformly

Structural Patterns: Decorator

‘UML: Decorator

c

L

l+Operation()
AN

I | commponent
ConcreteComponent Decorator ke>—

+Operation() +Operation() - -} — | component. Operation() IT

& & |

ConcreteDecoratorA ConcreteDecoratorB

-addedState

+Operation() +Operation() '
+AddedBehavior() |

base.Operation();
AddedBehavior(),

1 2 3 Y4 5
Frequency of use: T] medium

Software Design Pattern

Structural Patterns: Decorator

Intent

Attach additional responsibilities to an
object dynamically. Decorators provide
a flexible alternative to subclassing for
extending functionality.

Client-specified embellishment of a core
object by recursively wrapping it.

#Wrapping a gift, putting it in a box, and
wrapping the box.

Structural Patterns: Decorator

‘Role

#®The role of the Decorator pattern is to
provide a way of attaching new state
and behavior to an object dynamically.
The object does not know it is being
“decorated,” which makes this a useful
pattern for evolving systems. A key
implementation point in the Decorator
pattern is that decorators both inherit
the original class and contain an
instantiation of it.

Software Design Pattern m

Structural Patterns: Decorator

Structure

The client is always interested in CoreFunctionality.doThis(). The client may, or
may not, be interested in OptionalOne.doThis() and OptionalTwo.doThis(). Each
of these classes always delegate to the Decorator base class, and that class
always delegates to the contained “wrappee” object.

«interfaces

H+do This()

—

fbdoThis) | —————— wrapee.doThis();

CoreFunctionality OptionalWrapper | -wrappee
doThis()
[| |
OptionalOne | [OptionalTwe | [OptionalThree
+doThis() o This() doThis)) ==

Structural Patterns: Decorator

Example

The Decorator attaches additional
responsibilities to an object dynamically. The
ornaments that are added to pine or fir trees
are examples of Decorators. Lights, garland,
candy canes, glass ornaments, etc., can be
added to a tree to give it a festive look. The
ornaments do not change the tree itself which
is recognizable as a Christmas tree regardless

| RPN

floptional functionality,
liprovided by this class
super.doThis(),

Jimore optional functionality

VisualComponent

H+hangl(}

of particular ornaments used. As an example of | |

additional functionality, the addition of lights ﬂ e e

allows one to "light up” a Christmas tree.

Although paintings can be hung on a wall with
or without frames, frames are often added,
and it is the frame which is actually hung on

the wall. Prior to hanging, the paintings may
be matted and framed, with the painting,
matting, and frame forming a single visual

component.

Software Design Pattern m

Structural Patterns: Decorator

Problem

#®You want to add behavior or state to
individual objects at run-time.
Inheritance is not feasible because it is
static and applies to an entire class.

Structural Patterns: Decorator

‘Discussion

an inheritance hierarchy like ...

@ Suppose you are working on a user interface toolkit and you wish to
support adding borders and scroll bars to windows. You could define

Window

+draw()

AN

1
Mndm_wim_\ferlicnl_s:mllbnrl

I'IMndow_\hlﬁh_BorderI

|Window_With_Horizontal_Scrollbar |

[Window_With_Vertical_and_Horizontal_Scrollbar |

lWIrldow_ll\lth_Voﬂlcal_a\d_Horlmrul_SGrolhar_and_Bordor |

Software Design Pattern

Structural Patterns: Decorator

‘Discussion (Cont...)

Widget* aWidget = new BorderDecorator(
new HorizontalScrollBarDecorator(
new VerticalScrollBarDecorator(
new Window(80, 24 1)));
aWidget-=draw();
This flexibility can be achieved with

the following design

But the Decorator pattern suggests giving the client the ability to
specify whatever combination of “features” is desired.

winterface»
LCD

+draw()

Ay

Window

rdraw()

Structural Patterns: Decorator

‘Discussion (Cont...)

custom object might look like ...

Stream* aStream = new CompressingStream(
new ASCII7Stream(
new FileStream{ "fileName.dat" }));
aStream-=>putString("Hello world");

|
Decorator

tdraw()

yaY

|
Border

| | VerticalsB | ImmLmsal

Another example of cascading (or chaining) features together to produce a

#The solution to this class of problems involves encapsulating the original
object inside an abstract wrapper interface. Both the decorator objects and the
core object inherit from this abstract interface. The interface uses recursive
composition to allow an unlimited number of decorator “layers” to be added to

each core object.

#Note that this pattern allows responsibilities to be added to an object, not
methods to an object’s interface. The interface presented to the client must
remain constant as successive layers are specified.

#Also note that the core object’s identity has now been “hidden” inside of a
decorator object. Trying to access the core object directly is nhow a problem.

Software Design Pattern

Structural Patterns: Decorator

‘Rules of Thumb

Adapter provides a different interface to its subject. Proxy provides the
same interface. Decorator provides an enhanced interface.

® Adapter changes an object’s interface, Decorator enhances an object’s
responsibilities. Decorator is thus more transparent to the client. As a
consequence, Decorator supports recursive composition, which isn’t
possible with pure Adapters

@ Composite and Decorator have similar structure diagrams, reflecting
the fact that both rely on recursive composition to organize an open-
ended number of objects.

@ A Decorator can be viewed as a degenerate Composite with only one

component. However, a Decorator adds additional responsibilities - it
isn't intended for object aggregation.

Structural Patterns: Decorator

‘Rules of Thumb (Cont...)

Decorator is designed to let you add responsibilities to objects without
subclassing. Composite’s focus is not on embellishment but on
representation. These intents are distinct but complementary.
Consequently, Composite and Decorator are often used in concert.

@ Composite could use Chain of Responsibility to let components access
global properties through their parent. It could also use Decorator to
override these properties on parts of the composition.

Decorator and Proxy have different purposes but similar structures.
Both describe how to provide a level of indirection to another object,
and the implementations keep a reference to the object to which they
forward requests.

@ Decorator lets you change the skin of an object. Strategy lets you
change the guts.

Software Design Pattern

Structural Patterns: Decorator

fKnown Uses

Use the Decorator pattern when...

= You have:
+ An existing component class that may be unavailable for
subclassing.
= You want to:

+ Attach additional state or behavior to an object
dynamically.

+ Make changes to some objects in a class without
affecting others.

+ Avoid subclassing because too many classes could result.

Structural Patterns: Facade

‘UML: Facade

Fagade

Subsyslem

Coe ek
Frequency of use MMM hqh

Software Design Pattern

Structural Patterns: Facade

Intent

Provide unified interface to interfaces within a subsystem
Shield clients from subsystem components

Promote weak coupling between client and subsystem
components

Client ———
Facade

g

A

Structural Patterns: Facade

‘Role

#®The role of the Facade pattern is to
provide different high-level views of
subsystems whose details are hidden
from users. In general, the operations
that might be desirable from a user’s
perspective could be made up of
different selections of parts of the
subsystems.

Software Design Pattern

Structural Patterns: Fagade

Structure

inscrutable mass of software.

Facade
-+ Optional
— — = additional
) Facade

Structural Patterns: Facade

@ Hiding detail is a key programming
concept. What makes the Facade pattern
different from, say, the Decorator or
Adapter patterns is that the interface it
builds up can be entirely new. It is not
coupled to existing requirements, nor
must it conform to existing interfaces.
There can also be several fagades built
uparound an existing set of subsystems.

The term “subsystem” is used here
deliberately; we are talking at a higher
level than classes. See the UML diagram
in Figure at the right; it considers the
subsystems to be grouped together, so
they can interact in agreed ways to form
the top-level operations.

Structure (Cont...)

by)

Facade takes a “riddle wrapped in an enigma shrouded in
mystery”, and interjects a wrapper that tames the amorphous and

Client

SubsystemA

SubsystemB

Subsystem(

Facade

-a: SubsystemA
=b : SubsystemB
—C: SubsystemC

+0peration1()
+0peration2()

<l

~facade : Facade

Software Design Pattern

Structural Patterns: Facade

‘Example

The Fagade defines a unified, higher level interface to a subsystem that
makes it easier to use. Consumers encounter a Fagade when ordering
from a catalog. The consumer calls one number and speaks with a
customer service representative. The customer service representative
acts as a Fagade, providing an interface to the order fulfillment
department, the billing department, and the shipping department.

Customer service

Facade

Order
|Fulf;lmoﬂl [Biting | [Shipping |

Structural Patterns: Facade

'Example (Cont...)

Graph interface to a simulation engine:
SchematicEditor ———
Graph
Director
[2 .
Relation Port % Entity
Z% | I
BufferedRelation | | AtomicEntity | |[CompositeEntity
Token Actor

Software Design Pattern

Structural Patterns: Facade

Problem

#® A segment of the client community
needs a simplified interface to the
overall functionality of a complex
subsystem.

Structural Patterns: Facade

Discussion

Facade discusses encapsulating a complex subsystem
within a single interface object. This reduces the
learning curve necessary to successfully leverage the
subsystem. It also promotes decoupling the
subsystem from its potentially many clients. On the
other hand, if the Facade is the only access point for
the subsystem, it will limit the features and flexibility
that “power users” may need.

@ The Facade object should be a fairly simple advocate
or facilitator. It should not become an all-knowing
oracle or “god” object.

Software Design Pattern

Structural Patterns: Facade

‘Rules of Thumb

Fagade defines a new interface, whereas Adapter uses an old
interface. Remember that Adapter makes two existing interfaces
work together as opposed to defining an entirely new one.

@ Whereas Flyweight shows how to make lots of little objects, Fagade
shows how to make a single object represent an entire subsystem.

@ Mediator is similar to Fagade in that it abstracts functionality of
existing classes. Mediator abstracts/centralizes arbitrary
communications between colleague objects. It routinely “adds
value”, and it is known/referenced by the colleague objects. In
contrast, Facade defines a simpler interface to a subsystem, it
doesn’t add new functionality, and it is not known by the subsystem
classes.

Structural Patterns: Facade

‘Rules of Thumb (Cont...)

@ Abstract Factory can be used as an alternative to Fagade to hide
platform-specific classes.

Facade objects are often Singletons because only one Fagade
object is required.

Adapter and Fagade are both wrappers; but they are different
kinds of wrappers. The intent of Facade is to produce a simpler
interface, and the intent of Adapter is to design to an existing
interface. While Fagade routinely wraps multiple objects and
Adapter wraps a single object; Fagade could front-end a single
complex object and Adapter could wrap several legacy objects.

Software Design Pattern

Structural Patterns: Facade

Known Uses

Use the Facade pattern when...
= A system has several identifiable subsystems and:

+ The abstractions and implementations of a subsystem are
tightly coupled.

+ The system evolves and gets more complex, but early adopters
might want to retain their simple views.

+ You want to provide alternative novice, intermediate, and
“power user” interfaces.
+ There is a need for an entry point to each level of layered

software

= Choose the Fagade you need...
+ Opaque - Subsystem operations can only be called through the

Facade.

+ Transparent - Subsystem operations can be called directly as
well as through the Facade.

+ Singleton - Only one instance of the Facade is meaningful.

Structural Patterns: Flyweight

FlyweightFactory

+GetFlyweight(in key)}

N

UML: Flyweight

flyweights Flyweight

+Operation(in extrinsicState)

JAN

else

if flyweights[key] exists
return existing flyweight

create new flyweight
add to pool of flyweights
return new flyweight

Client

—

JAN

—

UnsharedConcreteFlyweight

ConcreteFlyweight

-intrinsicState

FallState

+Operation(in extrinsicState)

+Operation{in axtrinsicState)

AN

| 2 3 4 §
Frequency of use I T T low

Software Design Pattern

Structural Patterns: Flyweight

Intent

#Use sharing to support large numbers
of fine-grained objects efficiently.

@ The Motif GUI strategy of replacing
heavy-weight widgets with light-weight
gadgets.

Structural Patterns: Flyweight

‘Role

@ The Flyweight pattern promotes an efficient way to
share common information present in small objects
that occur in a system in large numbers. It thus helps
reduce storage requirements when many values are
duplicated.

@ The Flyweight pattern distinguishes between the
intrinsic and extrinsic state of an object.

@ The greatest savings in the Flyweight pattern occur
when objects use both kinds of state but:

= The intrinsic state can be shared on a wide scale, minimizing
storage requirements.

= The extrinsic state can be computed on the fly, trading
computation for storage.

Software Design Pattern m

Structural Patterns: Flyweight

Structure

@ Flyweights are stored in a Factory’s repository. The client restrains herself from
creating Flyweights directly, and requests them from the Factory. Each Flyweight
cannot stand on its own. Any attributes that would make sharing impossible must
be supplied by the client whenever a request is made of the Flyweight. If the
context lends itself to “economy of scale” (i.e. the client can easily compute or
look-up the necessary attributes), then the Flyweight pattern offers appropriate

leverage.
Factory
+makeF lyweight()
Client "—\cﬂcm
Flyweight
ableState
+dolt()

Structural Patterns: Flyweight

Structure (Cont...)

The Ant, Locust, and Cockroach classes can be “light-weight” because their
instance-specific state has been de-encapsulated, or externalized, and must be
supplied by the client.

Client Factory

(+makelnsect(in type, in state)
|

- cache

/

BillionSpecies

+doThis(in extrinsicState)

l |

Locust Cockroach Ant
LintrinsicState LintrinsicState LintrinsicState
t+doThis(in extrinsicState) +doThis(in extrinsicState) H+doThis(in extrinsicState)

Software Design Pattern

Structural Patterns: Flyweight

‘Example

4 The Flyweight uses sharing to support large numbers of objects
efficiently. The public switched telephone network is an example of a
Flyweight. There are several resources such as dial tone generators,
ringing generators, and digit receivers that must be shared between all
subscribers. A subscriber is unaware of how many resources are in the
pool when he or she lifts the handset to make a call. All that matters to
subscribers is that a dial tone is provided, digits are received, and the
call is completed.

1 Lo
V,\ \ €T
RN

Dial Tone
= Generator

3

Structural Patterns: Flyweight

Problem

Designing objects down to the lowest
levels of system “granularity” provides
optimal flexibility, but can be
unacceptably expensive in terms of
performance and memory usage.

Software Design Pattern

Structural Patterns: Flyweight

‘Discussion

@ The Flyweight pattern describes how to share objects to allow
their use at fine granularities without prohibitive cost. Each
“flyweight” object is divided into two pieces: the state-
dependent (extrinsic) part, and the state-independent (intrinsic)
part. Intrinsic state is stored (shared) in the Flyweight object.
Extrinsic state is stored or computed by client objects, and
passed to the Flyweight when its operations are invoked.

An illustration of this approach would be Motif widgets that have
been re-engineered as light-weight gadgets. Whereas widgets
are “intelligent” enough to stand on their own; gadgets exist in
a dependent relationship with their parent layout manager
widget. Each layout manager provides context-dependent event
handling, real estate management, and resource services to its
flyweight gadgets, and each gadget is only responsible for
context-independent state and behavior.

Structural Patterns: Flyweight

‘Rules of Thumb

Whereas Flyweight shows how to make lots of
little objects, Facade shows how to make a
single object represent an entire subsystem.

Flyweight is often combined with Composite to
implement shared leaf nodes.

Terminal symbols within Interpreter’s abstract
syntax tree can be shared with Flyweight.

@ Flyweight explains when and how State objects can be
shared.

Software Design Pattern

Structural Patterns: Flyweight

Known Uses

Use the Flyweight pattern when...

» There are:
+ Many objects to deal with in memory

+ Different kinds of state, which can be handled differently
to achieve space savings

» Groups of objects that share state
+ Ways of computing some of the state at runtime

= You want to:

Structural Patterns: Proxy

Client

‘UML: Proxy

+ Implement a system despite severe memory constraints

Subject
+Request()
RealSubject Proxy
L Requesi() realSubject TRequest() l

realSubject, Request() Ij

i 2 3 4w B
Frequency of use. N medium high

Software Design Pattern

Structural Patterns: Proxy

Intent

#Provide a surrogate or placeholder for
another object to control access to it.

#Use an extra level of indirection to
support distributed, controlled, or
intelligent access.

@ Add a wrapper and delegation to
protect the real component from undue
complexity.

Structural Patterns: Proxy

‘Role

#®The Proxy pattern supports objects that
control the creation of and access to
other objects. The proxy is often a
small (public) object that stands in for a
more complex (private) object that is
activated once certain circumstances
are clear.

Software Design Pattern

Structural Patterns: Proxy

Structure

I

By defining a Subject interface, the presence of the Proxy object standing
in place of the RealSubject is transparent to the client.

| Client } ainterface»
Subject

+dolt)
| |
Proxy RealSubject
wrapee
— Jrdolt() +dolt()

I wrapee->dolt();

r
I
I
“| if Optional functionality
/f Optional functionality

Structural Patterns: Proxy

Example

®Example

The Proxy provides a surrogate or place holder to provide access to an object. A
check or bank draft is a proxy for funds in an account. A check can be used in
place of cash for making purchases and ultimately controls access to cash in the
issuer’s account.

Payment
H+Amount()
I Q |
":{,{/ _ RealSubject i| uﬁﬂ“‘ ¥ 3 - -"' f
: e =
- CheckProxy o

FundsPaidFromAccount

Software Design Pattern m

Structural Patterns: Proxy

Problem

#You need to support resource-hungry
objects, and you do not want to
instantiate such objects unless and until
they are actually requested by
the client.

Structural Patterns: Proxy

Discussion

Design a surrogate, or proxy, object that: instantiates
the real object the first time the client makes a
request of the proxy, remembers the identity of this
real object, and forwards the instigating request to
this real object. Then all subsequent requests are
simply forwarded directly to the encapsulated real
object.

Software Design Pattern

Structural Patterns: Proxy

Discussion (Cont...)

@ There are four common situations in which the Proxy pattern is
applicable.

1. A virtual proxy is a placeholder for “expensive to create” objects. The real
object is only created when a client first requests/accesses the object.

2. A remote proxy provides a local representative for an object that resides in
a different address space. This is what the "stub” code in RPC and CORBA
provides.

3. A protective proxy controls access to a sensitive master object. The
“surrogate” object checks that the caller has the access permissions
required prior to forwarding the request.

4. A smart proxy interposes additional actions when an object is accessed.
Typical uses include:

mCounting the number of references to the real object so that it can
be freed automatically when there are no more references (aka
smart pointer),

mLoading a persistent object into memory when it's first referenced,

nChecking that the real object is locked before it is accessed to
ensure that no other object can change it.

Structural Patterns: Proxy

‘Rules of Thumb

Adapter provides a different interface to its
subject. Proxy provides the same interface.
Decorator provides an enhanced interface.

Decorator and Proxy have different purposes
but similar structures. Both describe how to
provide a level of indirection to another object,
and the implementations keep a reference to
the object to which they forward requests.

Software Design Pattern

Structural Patterns: Proxy

Known Uses

Use the Proxy pattern when...

= You have objects that:
+ Are expensive to create.
» Need access control.
+ Access remote sites.
+ Need to perform some action whenever they are
accessed.
= You want to:
+ Create objects only when their operations are requested.

+ Perform checks or housekeeping on objects whenever
accessed.

+ Have a local object that will refer to a remote object.

» Implement access rights on objects as their operations
are requested.

Software Design Pattern m

Day 4 & 5:Behavioral Patterns

C.K.Leng

Purposes

In software engineering, behavioral design
patterns are design patterns that identify
common communication patterns between
objects and realize these patterns. By doing
so, these patterns increase flexibility in
carrying out this communication.

Software Design Pattern m

Patterns

@ Chain of responsibility: A way of passing a request
between a chain of objects

® Command: Encapsulate a command request as an object

@ Interpreter: A way to include language elements in a program
@ Iterator: Sequentially access the elements of a collection

@ Mediator: Defines simplified communication between classes
® Memento: Capture and restore an object’s internal state

»

Patterns (Cont...)

@ Observer: A way of notifying change to a number of classes
@ State: Alter an object’s behavior when its state changes
@ Strategy: Encapsulates an algorithm inside a class

@ Template method: Defer the exact steps of an algorithm to
a subclass

@ Visitor: Defines a new operation to a class without change

Software Design Pattern

‘Rules of thumb

4 Behavioral patterns are concerned with the assignment of
responsibilities between objects, or, encapsulating behavior in an
object and delegating requests to it.

Chain of responsibility, Command, Mediator, and Observer, address
how you can decouple senders and receivers, but with different trade-
offs. Chain of responsibility passes a sender request along a chain of
potential receivers. Command normally specifies a sender-receiver
connection with a subclass. Mediator has senders and receivers
reference each other indirectly. Observer defines a very decoupled
interface that allows for multiple receivers to be configured at run-time.

@ Chain of responsibility can use Command to represent requests as
objects.

Chain of responsibility is often applied in conjunction with Composite.
There, a component’s parent can act as its successor.

4 Command can use Memento to maintain the state required for an undo
operation.

‘Rules of thumb (Cont...)

4 Command and Memento act as magic tokens to be passed around and
invoked at a later time. In Command, the token represents a request;
in Memento, it represents the internal state of an object at a particular
time. Polymorphism is important to Command, but not to Memento
because its interface is so narrow that a memento can only be passed
as a value.

4 MacroCommands can be implemented with Composite.

4 A Command that must be copied before being placed on a history list
acts as a Prototype.

@ Interpreter can use State to define parsing contexts.

4 The abstract syntax tree of Interpreter is a Composite (therefore
Iterator and Visitor are also applicable).

@ Terminal symbols within Interpreter's abstract syntax tree can be
shared with Flyweight.

4 Iterator can traverse a Composite. Visitor can apply an operation over
a Composite.

Software Design Pattern

‘Rules of thumb (Cont...)

Polymorphic Iterators rely on Factory Methods to instantiate the
appropriate Iterator subclass.

Mediator and Observer are competing patterns. The difference
between them is that Observer distributes communication by
introducing “observer” and “subject” objects, whereas a Mediator
object encapsulates the communication between other objects. We've
found it easier to make reusable Observers and Subjects than to make
reusable Mediators.

@ Mediator is similar to Fagade in that it abstracts functionality of existing
classes. Mediator abstracts/centralizes arbitrary communication
between colleague objects, it routinely “adds value”, and it is
known/referenced by the colleague objects (i.e. it defines a
multidirectional protocol). In contrast, Facade defines a simpler
interface to a subsystem, it doesn’t add new functionality, and it is not
known by the subsystem classes (i.e. it defines a unidirectional protocol
where it makes requests of the subsystem classes but not vice versa).

‘Rules of thumb (Cont...)

On the other hand, Mediator can leverage Observer for dynamically
registering colleagues and communicating with them.

#® Memento is often used in conjunction with Iterator. An Iterator can use
a Memento to capture the state of an iteration. The Iterator stores the
Memento internally.

State is like Strategy except in its intent.
Flyweight explains when and how State objects can be shared.
State objects are often Singletons.

Strategy lets you change the guts of an object. Decorator lets you
change the skin.

Strategy is to algorithm. as Builder is to creation.

Strategy has 2 different implementations, the first is similar to State.
The difference is in binding times (Strategy is a bind-once pattern,
whereas State is more dynamic).

> @@

L

Software Design Pattern

‘Rules of thumb (Cont...)

@ Strategy objects often make good Flyweights.
Strategy is like Template method except in its granularity.
&

Template method uses inheritance to vary part of an algorithm.
Strategy uses delegation to vary the entire algorithm.

@ The Visitor pattern is like a more powerful Command pattern because
the visitor may initiate whatever is appropriate for the kind of object it
encounters.

Behavioral Patterns: Chain of Responsibility

‘UML: Chain of Responsibility

Client Handler

+HandleRequest()

N

IConcreteHandler1 ConcreteHandler2) ~ |
successor

+HandleRequest() +HandleRequest()

1 2 3 4 &
Frequency of use: T T mediumlow

Software Design Pattern

Behavioral Patterns: Chain of Responsibility

Intent

Avoid coupling the sender of a request to its receiver
by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the
request along the chain until an object handles it.

Launch-and-leave requests with a single processing
pipeline that contains many possible handlers.

@ An object-oriented linked list with recursive traversal.

Behavioral Patterns: Chain of Responsibility

‘Role

The Chain of Responsibility pattern works with a list
of Handler objects that have limitations on the
nature of the requests they can deal with. If an
object cannot handle a request, it passes it on to the
next object in the chain. At the end of the chain,
there can be either default or exceptional behavior.

Software Design Pattern

Behavioral Patterns: Chain of Responsibility

continues.

‘Structure

- nextHandier—{__ Handler

The derived classes know how to satisfy Client requests. If the
“current” object is not available or sufficient, then it delegates to the
base class, which delegates to the “next” object, and the circle of life

|

thandle() [~

nextHandler handle(); Ij

o

HandlerOne HandlerTwo

+handle()

If | can handle request

| imandie i

else
super handle();

Multiple handlers could contribute to the handling of each request.
The request can be passed down the entire length of the chain,
with the last link being careful not to delegate to a “null next”.

Behavioral Patterns: Chain of Responsibility

‘Example

4 The Chain of Responsibility pattern avoids coupling the sender of
a request to the receiver by giving more than one object a
chance to handle the request. ATM use the Chain of
Responsibility in money giving mechanism.

Software Design Pattern m

Behavioral Patterns: Chain of Responsibility

| Example (Cont...)

Handling events in a graphical hierarchy:

If interactor I= null

| interactor.handle(event,this)
| else
parent.handleEvent(event)

0.1 0.* - 0.*

Interactor Figure :
. children
handle(Event, Figure) handleEvent(Event) ()
CompositeFigureK > parent

Behavioral Patterns: Chain of Responsibility

Problem

@ There is a potentially variable number of
“handler” or “processing element” or “node”
objects, and a stream of requests that must
be handled. Need to efficiently process the
requests without hard-wiring handler

relationships and precedence, or request-to-
handler mappings.

Request
—
Client
IPmlng .Iemtml |Proeul-ing element
lProcasslng alemaml IProeasslng element I

Software Design Pattern

o

ehavioral Patterns: Chain of Responsibility

‘Discussion

Encapsulate the processing
elements inside a “pipeline”
abstraction; and have clients
“launch and leave” their
requests at the entrance to
the pipeline.

@ Chain of Responsibility
functions as a wrapper or
modifier of an existing class.

It provides a different or P'mm
translated view of that class.
Processing
element

J -

p

[
a

tterns: Chain of Responsibility

[
I_,_
[
-
—
(S
@
Iﬁ
o

‘Discussion (Cont...)

@ The pattern chains the receiving objects together, and then passes any
request messages from object to object until it reaches an object capable
of handling the message. The number and type of handler objects isn’t
known a priori, they can be configured dynamically. The chaining
mechanism uses recursive composition to allow an unlimited number of
handlers to be linked.

Chain of Responsibility simplifies object interconnections. Instead of
senders and receivers maintaining references to all candidate receivers,
each sender keeps a single reference to the head of the chain, and each
receiver keeps a single reference to its immediate successor in the chain.

@ Make sure there exists a “safety net” to “catch” any requests which go
unhandled.

Do not use Chain of Responsibility when each request is only handled by
one handler, or, when the client object knows which service object
should handle the request.

Software Design Pattern m

Behavioral Patterns: Chain of Responsibility

‘Rules of Thumb

Chain of Responsibility, Command, Mediator, and
Observer, address how you can decouple senders
and receivers, but with different trade-offs. Chain of
Responsibility passes a sender request along a chain
of potential receivers.

@ Chain of Responsibility can use Command to
represent requests as objects.

Chain of Responsibility is often applied in conjunction
with Composite. There, a component’s parent can act
as its successor.

Behavioral Patterns: Chain of Responsibility

Known Uses

@ Use the Chain of Responsibility pattern
when...

= YOu have:
+ More than one handler for a request

+ Reasons why a handler should pass a request
on to another one in the chain

+ A set of handlers that varies dynamically
= You want to:

+ Retain flexibility in assigning requests to
handlers

Software Design Pattern m

Behavioral Patterns: Command

‘UML: Command

Client Invoker Command
+Execute()
1
|
|
|
I Receiver receiver 'ConcreteCommand
: - P aceive e
| +Action() +Execute()
| 7y +
| | I
______________________ "
1
receiver Action() Ij
Frequency of use ‘_4‘= medium high
havioral Patterns: Command

Intent

operations.

object status

@ Encapsulate a request as an object, thereby letting
you parameterize clients with different requests,
queue or log requests, and support undoable

An object-oriented callback.

@ Promote “invocation of a method on an object” to full

Software Design Pattern

100

- L

=1-11

avioral Patterns: Command

‘Role

The Command pattern creates distance
between the client that requests an operation
and the object that can perform it. This
pattern is particularly versatile. It can
support:

= Sending requests to different receivers

= Queuing, logging, and rejecting requests

= Composing higher-level transactions from
primitive operations

= Redo and Undo functionality

Behavioral Patterns: Command

Structure

W

® The client that creates a command is not the same client that
executes it. This separation provides flexibility in the timing and
sequencing of commands. Materializing commands as objects means
they can be passed, staged, shared, loaded in a table, and otherwise
instrumented or manipulated like any other object.

Receiver

Client

HdaoT his{}

rdoT hatl)
targelObject = recalverObject;
targetMethod = mathodPointar;
-sametDhject :

|
|
|
|
|
| [calibackone CallbackTwo |
|
|
|
|
]
]

bos s "
. the token object is passed to another Ohjact targaiMathod();
object and that object calls targetObject tarpeihd :

Callbackinterface token = o u“Java
new CallbackTwa(new Recelver(), "doThis"); i .
token executa);

Command objects can be thought of as “tokens” that are created
by one client that knows what need to be done, and passed to
another client that has the resources for doing it.

Software Design Pattern

101

al Patterns: Command

C
(L
—
=
L‘\
'ﬁ
sl

'Example

The Command pattern allows requests to be encapsulated as objects,
thereby allowing clients to be parameterized with different requests. The
“check” at a diner is an example of a Command pattern. The waiter or
waitress takes an order or command from a customer and encapsulates
that order by writing it on the check. The order is then queued for a
short order cook. Note that the pad of “checks” used by each waiter is
not dependent on the menu, and therefore they can support commands
to cook many different items.

Customer Waitress Order Cook
(client) (invoker) (command) (receiver)

| | | I
O I I

| | | |

| | PlaceOrder() | I

| |

I (I o I |

| 1 I I

| I =s Cook()

| | =

Behavioral Patterns: Command

Problem

@ Need to issue requests to objects without knowing
anything about the operation being requested or the
receiver of the request.

Software Design Pattern

102

1s: Command

L.j
)
I_,
e !
[-
[
o
Iﬁ
o
(R
)
tl
(=
£y
[UN
Iﬁ
Iﬁ
{

4 Command decouples the object that invokes the operation from the
one that knows how to perform it. To achieve this separation, the
designer creates an abstract base class that maps a receiver (an
object) with an action (a pointer to a member function). The base
class contains an execute() method that simply calls the action on
the receiver.

4 All clients of Command objects treat each object as a “black box” by
simply invoking the object’s virtual execute() method whenever the

A

client requires the object’s "service”.

@ A Command class holds some subset of the following: an object, a
method to be applied to the object, and the arguments to be

passed when the method is applied. The Command'’s “execute”
method then causes the pieces to come together.

Sequences of Command objects can be assembled into composite
(or macro) commands.

-

sehavioral Ps

tterns: Command

‘Rules of Thumb

L

@ Chain of Responsibility, Command, Mediator, and Observer,
address how you can decouple senders and receivers, but with
different trade-offs. Command normally specifies a sender-
receiver connection with a subclass.

= Chain of Responsibility can use Command to represent
requests as objects.

= Command and Memento act as magic tokens to be passed
around and invoked at a later time. In Command, the token
represents a request; in Memento, it represents the internal
state of an object at a particular time. Polymorphism is
important to Command, but not to Memento because its
interface is so narrow that a memento can only be passed as
a value.

Software Design Pattern 103

Behavioral Patterns: Command

| Rules of Thumb (Cont...)

4 Command can use Memento to maintain the state
required for an undo operation.

#® MacroCommands can be implemented with
Composite.

A Command that must be copied before being placed
on a history list acts as a Prototype.

@ Two important aspects of the Command pattern:
interface separation (the invoker is isolated from the
receiver), time separation (stores a ready-to-go
processing request that's to be stated later).

-]

Behavioral Patterns: Command

Known Uses

#Use the Command pattern when...

= You have:

+ Commands that different receivers can handle
in different ways

+ A high-level set of commands that are
implemented by primitive operations
= YOU want to:

+ Specify, queue, and execute commands at
different times

+ Support an Undo function for commands

+ Support auditing and logging of all changes via
commands

Software Design Pattern

104

1avioral Patterns: Interpreter

(o0

®

-4
5

\UML: Inferpreter

Context

Client AbstractExpression

+Interpret(in Context)

TerminalExpression Nontem\inaIExpression >
i+ Interpret(in Context) 1+ Interpret(in Context)

1 2 3 4 §
Frequency of use I low

Behavioral Patterns: Interpreter

Intent

Given a language, define a representation for
its grammar along with an interpreter that
uses the representation to interpret
sentences in the language.

Map a domain to a language, the language to
a grammar, and the grammar to a
hierarchical object-oriented design.

Software Design Pattern 105

Benhavioral Patterns: Interpreter

‘Structure

Interpreter suggests modeling the domain with a recursive grammar.
Each rule in the grammar is either a ‘composite’ (a rule that
references other rules) or a terminal (a leaf node in a tree structure).
Interpreter relies on the recursive traversal of the Composite pattern
to interpret the "sentences’ it is asked to process.

Client i
ien cinterface») -el s
Lkl
+solve(inout Context)
| |
Context TerminalExpression CompoundExpression
i+solve(inout Context)

I
1
I perform "parent” functionality
Il then delagate to each "child" element

I "Context” is data structure for
I holding input and output

Benhavioral Patterns: Interprecer N A
at

L VAR’

Exa I I I p I e Musical notation
- {AbstractExpression)

@ The Interpreter pattern defines a ' |

grammatical representation for a EETaz ﬁ

Motas

language and an interpreter to emnascpossion Sinatures
interpret the grammar. Musicians are

examples of Interpreters. The pitch

of a sound and its duration can be

represented in musical notation on a

staff. This notation provides the

language of music. Musicians playing

the music from the score are able to

reproduce the original pitch and

duration of each sound represented.

Software Design Pattern 106

Behavioral Patterns: Interpreter

Problem

A class of problems occurs repeatedly in a
well-defined and well-understood domain. If
the domain were characterized with a
“language”, then problems could be easily
solved with an interpretation “engine”.

sehavioral Patterns: Interpreter

Discussion

@ The Interpreter pattern discusses: defining a domain
language (i.e. problem characterization) as a simple language
grammar, representing domain rules as language sentences,
and interpreting these sentences to solve the problem. The
pattern uses a class to represent each grammar rule. And
since grammars are usually hierarchical in structure, an
inheritance hierarchy of rule classes maps nicely.

@ An abstract base class specifies the method interpret(). Each
concrete subclass implements interpret() by accepting (as an
argument) the current state of the language stream, and
adding its contribution to the problem solving process.

Software Design Pattern

107

Benhavioral Patterns: Interpreter

‘Rules of Thumb

@ Considered in its most general form (i.e. an operation
distributed over a class hierarchy based on the Composite
pattern), nearly every use of the Composite pattern will also
contain the Interpreter pattern. But the Interpreter pattern
should be reserved for those cases in which you want to think
of this class hierarchy as defining a language.

@ Interpreter can use State to define parsing contexts.

® The abstract syntax tree of Interpreter is a Composite
(therefore Iterator and Visitor are also applicable).

Terminal symbols within Interpreter’s abstract syntax tree can
be shared with Flyweight.
@ The pattern doesn't address parsing. When the grammar is very

complex, other techniques (such as a parser) are more
appropriate.

Behavioral Patterns: Interpreter

Known Uses

#Use the Interpreter pattern when...
= YOu have a grammar to be interpreted
and:
+ The grammar is not too large.
« Efficiency is not critical.
+ Parsing tools are available.
+ XML is an option for the specification.

Software Design Pattern 108

Sehavioral Patterns: lterator

‘UML: [terator

Aggregate Client Iterator
+Createlterator() +First()
+Nex|()
+IsDone()
+Curmrentitem()

T

ConcreteAggregate_ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 Concretelterator

+Createlterator()

T
|
|

relurn new Concretelleralor(this) Ij

1 2 3 4 &
Frequency of use. I high

Intent

@ Provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.

@ The C++ , Java, and .NET standard library
abstraction that makes it possible to decouple
collection classes and algorithms.

@ Promote to “full object status” the traversal of a
collection.

@ Polymorphic traversal

Software Design Pattern

109

ol

Behavioral Patterns: lterator

‘Role

@ The Iterator pattern provides a way of accessing
elements of a collection sequentially, without
knowing how the collection is structured. As an
extension, the pattern allows for filtering elements in
a variety of ways as they are generated.

Sehavioral Patterns: lterator

Structure

WL

class.

The Client uses the Collection class’ public interface directly. But
access to the Collection’s elements is encapsulated behind the
additional level of abstraction called Iterator. Each Collection derived
class knows which Iterator derived class to create and return. After
that, the Client relies on the interface defined in the Iterator base

Client Collection
[+createTraversalObject() - TraversalAbstraction

T \(ListCollection MapCollection
o +create TraversalObject() trcreateTraversalObject() ":
rnext() / i |
+isDone() I 1 |
] |
‘L‘ ;F return new ListTraversal(this): BI I
A |
MapTraversal ListTraversal :
|
|
|

Software Design Pattern

110

'Example

The Iterator provides ways to access elements of an aggregate object
sequentially without exposing the underlying structure of the object.
Files are aggregate objects. In office settings where access to files is
made through administrative or secretarial staff, the Iterator pattern is
demonstrated with the secretary acting as the Iterator. Several
television comedy skits have been developed around the premise of an
executive trying to understand the secretary’s filing system. To the
executive, the filing system is confusing and illogical, but the secretary
is able to access files quickly and efficiently.

On early television sets, a dial was used to change channels. When
channel surfing, the viewer was required to move the dial through each
channel position, regardless of whether or not that channel had
reception. On modern television sets, a next and previous button are
used. When the viewer selects the “next” button, the next tuned
channel will be displayed.

navioral Patterns: lterator

L

'Example (Cont...)

Consider watching television in a hotel room in a strange city.
When surfing through channels, the channel number is not
important, but the programming is. If the programming on one
channel is not of interest, the viewer can request the next
channel, without knowing its number..

ChannelFrequencies
Channeliterator
+methodOfTraversal()
H+next()
Hprevious()
Tu hannel < — ———————— ChannelSelector
+methodOfTraversal()

Software Design Pattern

111

Behavioral Patterns: Iterator

Problem

@ Need to “abstract” the traversal of wildly
different data structures so that algorithms
can be defined that are capable of interfacing
with each transparently.

Behavioral Patterns: lterator

Discussion

“An aggregate object such as a list should give you a way to
access its elements without exposing its internal structure.
Moreover, you might want to traverse the list in different
ways, depending on what you need to accomplish. But you
probably don’t want to bloat the List interface with
operations for different traversals, even if you could
anticipate the ones you'll require. You might also need to
have more than one traversal pending on the same list.” And,
providing a uniform interface for traversing many types of
aggregate objects (i.e. polymorphic iteration) might be
valuable.

The Iterator pattern lets you do all this. The key idea is to
take the responsibility for access and traversal out of the
aggregate object and put it into an Iterator object that
defines a standard traversal protocol.

Software Design Pattern

112

-]

Behavioral Patterns: lterator

‘Discussion (Cont...)

® The Iterator abstraction is fundamental to an emerging
technology called “generic programming”. This strategy
seeks to explicitly separate the notion of “algorithm” from
that of “data structure”. The motivation is to: promote
component-based development, boost productivity, and
reduce configuration management.

@ As an example, if you wanted to support four data structures
(array, binary tree, linked list, and hash table) and three
algorithms (sort, find, and merge), a traditional approach
would require four times three permutations to develop and
maintain. Whereas, a generic programming approach would
only require four plus three configuration items.

Sehavioral Patterns: lterator

‘Rules of Thumb

@ The abstract syntax tree of Interpreter is a
Composite (therefore Iterator and Visitor are also
applicable).

@ Iterator can traverse a Composite. Visitor can apply
an operation over a Composite.

@ Polymorphic Iterators rely on Factory Methods to
instantiate the appropriate Iterator subclass.

@ Memento is often used in conjunction with Iterator.
An Iterator can use a Memento to capture the state
of an iteration. The Iterator stores the Memento
internally.

Software Design Pattern 113

Behavioral Patterns: lterator

Known Uses

Use the Iterator pattern when...
= YOu are iterating over a collection and one
of these conditions holds:

+ There are various ways of traversing it (several
enumerators).

+ There are different collections for the same
kind of traversing.

+ Different filters and orderings might apply.

Behavioral Patterns: Mediator

Mediator

‘UML: Mediator

mediator

Colleague

i

IConcreteMediator

A

&

|ConcreteColleague1

|COncreteColleague2

/N

1 2 3 4w B
Frequency of use I medium low

Software Design Pattern

114

Behavioral Patterns: Mediator

Intent

Define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling
by keeping objects from referring to each other
explicitly, and it lets you vary their interaction
independently.

Design an intermediary to decouple many peers.

@ Promote the many-to-many relationships between
interacting peers to “full object status”.

Behavioral Patterns: Mediator

‘Role

@ The Mediator pattern is there to enable objects to
communicate without knowing each other’s
identities. It also encapsulates a protocol that objects
can follow.

Software Design Pattern 115

Behavioral Patterns: Mediator

Structure

Colleagues (or peers) Cltont
are not coupled to one
another. Each talks to
the Mediator, which in Producer e c
turn knows and I
conducts the frnotfy) mm'»é)o [rrotiy0)
orchestration of the
others. The “many to
many” mapping
between colleagues that
would otherwise exist,
has been "promoted to |— —{tdeThisO
full object status”. This |
new abstraction L IT | |

Client I diary - Manager [widget

. #f high level interface for client Table Tree CheckBox
provides a locus of i1 1) delegate 1o all “coleagues"

- . . N2] ing and
indirection where 52 maeae &) coupling

additional leverage can P . .
be hosted. 1\ 1\ T

Behavioral Patterns: Mediator

Example

The Mediator defines an object that controls how a set of objects
interact. Loose coupling between colleague objects is achieved by
having colleagues communicate with the Mediator, rather than with
each other. The control tower at a controlled airport demonstrates this
pattern very well. The pilots of the planes approaching or departing the
terminal area communicate with the tower rather than explicitly
communicating with one another. The constraints on who can take off
or land are enforced by the tower. It is important to note that the tower
does not control the whole flight. It exists only to enforce constraints in

the terminal area. ATC Mediator
—
/
Flight 7E7
R—
Flight 747 % S =3
Flight 1011 Flight 112

Software Design Pattern 116

Behavioral Patterns: Mediator

‘Discussion

@ We want to design reusable components, but
dependencies between the potentially reusable
pieces demonstrates the “spaghetti code”

in an “all or nothing clump”).

al Patterns: Mediator

U
Ul
o
e !
-
e
lﬁ
.

‘Discussion (Cont...)

@ In Unix, permission to access system resources is
managed at three levels of granularity: world,

group, and owner. A group is a collection of ﬁ
users intended to model some functional
affiliation. Each user on the system can be a Jack

member of one or more groups, and each group
can have zero or more users assigned to it. Next i
figure shows three users that are assigned to all

three groups. Lamy
@ If we were to model this in software, we could
decide to have User objects coupled to Group i

objects, and Group objects coupled to User
objects. Then when changes occur, both classes
and all their instances would be affected.

Alex

phenomenon (trying to scoop a single serving results

Software Design Pattern

117

\avioral Patterns: Mediator

Discussion (Cont...)

An alternate approach would be to introduce “an
additional level of indirection” - take the mapping of
users to groups and groups to users, and make it an
abstraction unto itself. This offers several
advantages: Users and Groups are decoupled from %
one another, many mappings can easily be Jack \\
maintained and manipulated simultaneously, and the AN USERS
mapping abstraction can be extended in the future by % T0
defining derived classes . GROUPS

Partitioning a system into many objects generally Lamy MAPPING

enhances reusability, but proliferating Pt g @
LG

interconnections between those objects tend to % 4
reduce it again. The mediator object: encapsulates all }{Iéx
interconnections, acts as the hub of communication,

is responsible for controlling and coordinating the

interactions of its clients, and promotes loose

coupling by keeping objects from referring to each

other explicitly.

al Patterns: Mediator

[
-
L“--
[
(=
Iﬁ
R

‘Discussion (Cont...)

#®The Mediator pattern promotes a *many-to-many
relationship network” to “full object status”.
Modelling the inter-relationships with an object
enhances encapsulation, and allows the behavior of
those inter-relationships to be modified or extended
through subclassing.

#08An example where Mediator is useful is the
design of a user and group capability in an operating
system. A group can have zero or more users, and, a
user can be a member of zero or more groups. The
Mediator pattern provides a flexible and non-invasive
way to associate and manage users and groups.

Software Design Pattern

118

Behavioral Patterns: Mediator

‘Rules of Thumb

Chain of Responsibility, Command, Mediator, and Observer,
address how you can decouple senders and receivers, but with
different trade-offs. Chain of Responsibility passes a sender
request along a chain of potential receivers. Command normally
specifies a sender-receiver connection with a subclass. Mediator
has senders and receivers reference each other indirectly.
Observer defines a very decoupled interface that allows for
multiple receivers to be configured at run-time.

Mediator and Observer are competing patterns. The difference
between them is that Observer distributes communication by
introducing “observer” and “subject” objects, whereas a
Mediator object encapsulates the communication between other
objects. We've found it easier to make reusable Observers and
Subjects than to make reusable Mediators.

Behavioral Patterns: Mediator

‘Known Uses

Use the Mediator pattern when...

= Objects communicate in well-structured but
potentially complex ways.

= The objects’ identities should be protected even
though they communicate.

= Some object behaviors can be grouped and
customized

Software Design Pattern

119

sehavioral Patterns: Memento

‘UML: Memento

Originator Memento
memento Caretaker
-stale | _ _slate
[+SetMemento(in Memento) - +GetState()
+CreateMemento() | \\ +SetState()
/ -

~
! ~

LY

return new Memento(state) Ij stale = m . GeiStale() ﬁ

1 2 3 4 6
Frequency of use I low

Behavioral Patterns: Memento

Intent

Without violating encapsulation, capture
and externalize an object’s internal
state so that the object can be returned
to this state later.

A magic cookie that encapsulates a
“check point” capability.

Promote undo or rollback to full object
status.

Software Design Pattern

120

sehavioral Patterns: Memento

‘Role

later.

Behavioral Patterns: Memento

‘Structure

Originator

-slate

+setMemento()
— —+createMemento()

return new Memento(state); lj

@ This pattern is used to capture an
object’s internal state and save it
externally so that it can be restored

Memento

-slate

[+getState()
+setState()

slate = m->getState(), Ij

Software Design Pattern

121

al Patterns: Memento

C
U
—
=
L‘\
'ﬁ
.

'Example

®Example

The Memento captures and externalizes an object’s internal state so that the object
can later be restored to that state. This pattern is common among do-it-yourself
mechanics repairing drum brakes on their cars. The

drums are removed from both
sides, exposing both the right
and left brakes. Only one side
is disassembled and the other
serves as a Memento of how the Machanic D

brake parts fit together. T &

Only after the job has been completed $

on one side is the other side disassembled.

When the second side is disassembled,

the first side acts as the Memento. Leave Intact unt

brakes on Side1 are
Completed

Behavioral Patterns: Memento

Problem

#Need to restore an object back to its
previous state (e.g. “undo” or “rollback”
operations).

Software Design Pattern

122

\avioral Patterns: Memento

L.j
(o
I_,
(s

@ The client requests a Memento from the source object when it needs to
checkpoint the source object’s state. The source object initializes the
Memento with a characterization of its state. The client is the “care-taker”
of the Memento, but only the source object can store and retrieve
information from the Memento (the Memento is “opaque” to the client
and all other objects). If the client subsequently needs to “rollback” the
source object’s state, it hands the Memento back to the source object for
reinstatement.

4 An unlimited “undo” and “redo” capability can be readily implemented
with a stack of Command objects and a stack of Memento object.

4 The Memento design pattern defines three distinct roles:
sQOriginator - the object that knows how to save itself.

sCaretaker - the object that knows why and when the Originator needs
to save and restore itself.

sMemento - the lock box that is written and read by the Originator, and
shepherded by the Caretaker.

sehavioral Patterns: Memento

‘Rules of Thumb

Command and Memento act as magic tokens to be passed
around and invoked at a later time. In Command, the token
represents a request; in Memento, it represents the internal
state of an object at a particular time. Polymorphism is
important to Command, but not to Memento because its
interface is so narrow that a memento can only be passed as a
value.

Command can use Memento to maintain the state required for
an undo operation.

Memento is often used in conjunction with Iterator. An Iterator
can use a Memento to capture the state of an iteration. The
Iterator stores the Memento internally.

Software Design Pattern

123

Benavioral Patterns: Memento

‘Rules of Thumb (Cont...)

@ Memento can let you compose a Mediator out of smaller pieces
through recursive composition.

Decorator is designed to let you add responsibilities to objects
without subclassing. Memento's focus is not on embellishment
but on representation. These intents are distinct but
complementary. Consequently, Memento and Decorator are
often used in concert.

Flyweight is often combined with Memento to implement shared
leaf nodes.

sehavioral Patterns: Memento

‘Known Uses

#Use the Memento pattern when...

= An object’s state must be saved to be
restored later, and

= It is undesirable to expose the state
directly.

Software Design Pattern 124

wvioral Pé

L
(
wd
[

1

Subject

tterns: Qoserver

‘UML: Observer

|
|

relurn subjectStale Ij

observer Observer
+Attach(in Observer)
+Detach(in Observer) +Update()
+Notify() N
by
S
foreach o in observers
o.Update()
IConcreteSubject subject iConcreteObserver
FsubjectState observerSlate
+GeatState()

Behavioral Patterns: Observer

Intent

Many-to-one dependency between objects
Use when there are two or more views on the same “data”
aka "Publish and subscribe” mechanism

Choice of “push” or “pul

Subject

attach(Observer)
detach(Observer)

notify() (----- N

IH

observerState =
subject. GelState()

1 2 3 4 §
Frequency of use: NI high

notification styles

Observer

3

forall o in observers
o.update()

update()

ConcreteSubject

A

getState()

ConcreteObserver

i__<| state=subject.getState(); \I

Software Design Pattern

125

Behavioral Patterns: Observer

‘Role

L.j
o
I_,
@
-
@]
Iﬁ
-
e
G
(=
"
o
L.1
L._,
G
O
LI
(1),
(1
b
<
1.
=

‘Structure

Subject as needed.

@ The Observer pattern defines a relationship between
objects so that when one changes its state, all the
others are notified accordingly. There is usually an
identifiable single publisher of new state, and many
subscribers who wish to receive it.

@ Subject represents the core (or independent or common or engine)
abstraction. Observer represents the variable (or dependent or
optional or user interface) abstraction. The Subject prompts the
Observer objects to do their thing. Each Observer can call back to the

v.update()

Subject views « | Observer
. model

ratiachiin Observer) [Fupdate()
| {#setState() Zl}.
| +getState() [|
: ViewOne ViewTwo
|
! +update() +updatey()

model.getstate(); Ij

Software Design Pattern

126

Behavioral Patterns: Observer

The Observer defines a one-to-many relationship so that when one object
changes state, the others are notified and updated automatically. Some auctions
demonstrate this pattern. Each bidder possesses a numbered paddle that is used
to indicate a bid. The auctioneer starts the bidding, and “observes” when a
paddle is raised to accept the bid. The acceptance of the bid changes the bid
price which is broadcast to all of the bidders in the form of a new bid.

Auctioneer (Subject)

I
I
I
! 1. Accept Bid 2. Broadcast New High Bid
I
% ; v
=
g & &

Bidders (Observers)

@A large monolithic design does not scale
well as new graphing or monitoring
requirements are levied.

Software Design Pattern

127

: Observer

o
[+
=
=
[—
G
Iﬁ
fou
[
o
@
(=
3
1
Iﬁ
Iﬁ
¢

Discussion

Define an object that is the “keeper” of the data model and/or business
logic (the Subject). Delegate all “view"” functionality to decoupled and
distinct Observer objects. Observers register themselves with the
Subject as they are created. Whenever the Subject changes, it
broadcasts to all registered Observers that it has changed, and each
Observer queries the Subject for that subset of the Subject’s state that
it is responsible for monitoring.

This allows the number and “type” of “view"” objects to be configured
dynamically, instead of being statically specified at compile-time.

® The protocol described above specifies a “pull” interaction model.
Instead of the Subject “pushing” what has changed to all Observers,
each Observer is responsible for “pulling” its particular “window of
interest” from the Subject. The “push” model compromises reuse, while
the “pull” model is less efficient.

tterns: Observer

iy
e !
L
-
L_‘\
oy
ul
—
)
tl

‘Discussion (Cont...)

@ Issues that are discussed, but left to the discretion of
the designer, include: implementing event
compression (only sending a single change broadcast
after a series of consecutive changes has occurred),
having a single Observer monitoring multiple
Subjects, and ensuring that a Subject notify its
Observers when it is about to go away.

@ The Observer pattern captures the lion’s share of the
Model-View-Controller architecture that has been a
part of the Smalltalk community for years.

Software Design Pattern

128

Behavioral Patterns: Observer

‘Rules of Thumb

Chain of Responsibility, Command, Mediator, and Observer, address
how you can decouple senders and receivers, but with different trade-
offs. Chain of Responsibility passes a sender request along a chain of
potential receivers. Command normally specifies a sender-receiver
connection with a subclass. Mediator has senders and receivers
reference each other indirectly. Observer defines a very decoupled
interface that allows for multiple receivers to be configured at run-time.

Mediator and Observer are competing patterns. The difference
between them is that Observer distributes communication by
introducing “observer” and “subject” objects, whereas a Mediator
object encapsulates the communication between other objects. We've
found it easier to make reusable Observers and Subjects than to make
reusable Mediators.

@ On the other hand, Mediator can leverage Observer for dynamically
registering colleagues and communicating with them.

Behavioral Patterns: Observer

‘Known Uses

#Use the Observer pattern when...

= There are aspects to an abstraction that
can vary independently.

= Changes in one object need to be
propagated to a selection of other objects,
not all of them.

= The object sending the changes does not
need to know about the receivers.

Software Design Pattern 129

sehavioral Patterns: State

‘UML: State

Context state State
>
+Request() | +Handle()
|
| AN AN
|
|
l [ConcreteStateA [ConcreteStateB
state Handle() [j
+Handle() +Handle()

D
Frequency of use T medium

Behavioral Patterns: State

Intent

@ Allow an object to alter its behavior
when its internal state changes. The
object will appear to change its class.

An object-oriented state machine

®wrapper + polymorphic wrappee +
collaboration

Software Design Pattern 130

Behavioral Patterns: State

‘Role

#®The next pattern in this group, the
State pattern, can be seen as a dynamic
version of the Strategy pattern. When
the state inside an object changes, it
can change its behavior by switching to
a set of different operations. This is
achieved by an object variable changing
its subclass, within a hierarchy.

Behavioral Patterns: State

‘Structure

The state machine’s interface is encapsulated in the “wrapper” class. The
wrappee hierarchy’s interface mirrors the wrapper’s interface with the
exception of one additional parameter. The extra parameter allows
wrappee derived classes to call back to the wrapper class as necessary.
Complexity that would otherwise drag down the wrapper class is neatly
compartmented and encapsulated in a polymorphic hierarchy to which

the wrapper object delegates. [Cclient]
Context cureent State
P 'ﬁéﬁm State) goNext(in context)
I AN
1
current. goNexi(this); | StateOne StateTwo StateThree
r 4+goNext{in context)

I
1

context setState(StateTwo); I}]

Software Design Pattern 131

@ The State pattern allows an object to change its behavior when its
internal state changes. This pattern can be observed in a vending
machine. Vending machines have states based on the inventory, amount
of currency deposited, the ability to make change, the item selected, etc.
When currency is deposited and a selection is made, a vending machine
will either deliver a product and no change, deliver a product and
change, deliver no product due to insufficient currency on deposit, or
deliver no product due to inventory depletion.

VendingMachineState

JAN

VendingDepositState VendingStockState

g,

Behavioral Patterns: State

Problem

A monolithic object’s behavior is a
function of its state, and it must change
its behavior at run-time depending on
that state. Or, an application is
characterixed by large and numerous
case statements that vector flow of
control based on the state of the
application.

Software Design Pattern 132

Sehavioral Patterns: State

‘Discussion

The State pattern is a solution to the problem of how to make
behavior depend on state.

Define a “context” class to present a single interface to the
outside world.

Define a State abstract base class.

Represent the different “states” of the state machine as derived
classes of the State base class.

Define state-specific behavior in the appropriate State derived
classes.

> @

Maintain a pointer to the current “state” in the “context” class.

To change the state of the state machine, change the current
“state” pointer

*» @

Behavioral Patterns: State

QI

‘Discussion (Cont...)

® The State pattern does not specify where the state transitions
will be defined. The choices are two: the “context” object, or
each individual State derived class. The advantage of the latter
option is ease of adding new State derived classes. The
disadvantage is each State derived class has knowledge of
(coupling to) its siblings, which introduces dependencies
between subclasses.

A table-driven approach to designing finite state machines does
a good job of specifying state transitions, but it is difficult to
add actions to accompany the state transitions. The pattern-
based approach uses code (instead of data structures) to
specify state transitions, but it does a good job of
accommodating state transition actions.

Software Design Pattern 133

mn

L

‘Rules of Thumb

(e

QI

U
Ul
I_,
[
=
“
[
O
Iﬁ
el
(R
)
ul
(=
=
i
Iﬁ
Iﬁ
[
¢

State objects are often Singletons.
Flyweight explains when and how State objects can be shared.
Interpreter can use State to define parsing contexts.

Strategy has 2 different implementations, the first is similar to State. The
difference is in binding times (Strategy is a bind-once pattern, whereas
State is more dynamic).

The structure of State and Bridge are identical (except that Bridge admits
hierarchies of envelope classes, whereas State allows only one). The two
patterns use the same structure to solve different problems: State allows
an object’s behavior to change along with its state, while Bridge's intent is
to decouple an abstraction from its implementation so that the two can
vary independently.

@ The implementation of the State pattern builds on the Strategy pattern.
The difference between State and Strategy is in the intent. With Strategy,
the choice of algorithm is fairly stable. With State, a change in the state of
the “context” object causes it to select from its “palette” of Strategy

L2 2 2 4

*

objects.
Behavioral Patterns: State

‘Known Uses

#Use the State pattern when...

= You have objects that:

+ Will change their behavior at runtime, based on
some context

+ Are becoming complex, with many conditional
branches
= YOU want to:

+ Vary the set of handlers for an object request
dynamically

+ Retain flexibility in assigning requests to
handlers

Software Design Pattern 134

Behavioral Patterns: Strategy

UML: Strategy

Context

+Contextinterface()

strategy Strategy
+Algorithminterface()
ConcreteStrategy A ConcreteStrategyB ConcreteStrategyC

+Algonthminterface()

+Algonthminterface()

+Algorithminterface()

Intent

tcerns: Strategy

Frequency of use I edium high

Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it.

@ Capture the abstraction in an interface, bury implementation
details in derived classes.
Make algorithms interchangeable---"changing the guts”
Alternative to subclassing
Choice of implementation at run-time
Context —— Strategy
Contextinterface() Operation()
ConcreteStrategyl| |ConcreteStrategy2
Operation() Operation()

Software Design Pattern

135

Senhavioral Patterns: Strategy

‘Role

The Strategy pattern involves removing an algorithm
from its host class and putting it in a separate class.
There may be different algorithms (strategies) that are
applicable for a given problem. If the algorithms are all
kept in the host, messy code with lots of conditional
statements will result. The Strategy pattern enables a
client to choose which algorithm to use from a family of
algorithms and gives it a simple way to access it. The
algorithms can also be expressed independently of the
data they are using.

-]

Sehavioral Patterns: Strategy

‘Structure

The Interface entity could represent either an abstract base class, or the
method signature expectations by the client. In the former case, the
inheritance hierarchy represents dynamic polymorphism. In the latter
case, the Interface entity represents template code in the client and the
inheritance hierarchy represents static polymorphism.

Context

- strategy

algorithm()

|

ImplementationOne

ImplementationTwo

I+algorithm()

I+algorithm()

Software Design Pattern

136

[terns: strategy

-
(L1
=
—
[—
L‘\
Iﬁ
ul
[
o
@
(=
£y

‘Example

4 A Strategy defines a set of algorithms that can be used interchangeably.
Modes of transportation to an airport is an example of a Strategy.
Several options exist such as driving one’s own car, taking a taxi, an
airport shuttle, a city bus, or a limousine service. For some airports,
subways and helicopters are also available as a mode of transportation
to the airport. Any of these modes of transportation will get a traveler to
the airport, and they can be used interchangeably. The traveler must
chose the Strategy based on tradeoffs between cost, convenience, and

time.

TransportationToAirport | ~, Strategies(Opti

| |

Personal Car Taxi City Bus

navioral Patterns: Strategy

| Example (Cont...)

4 Drawing different connector styles:

shape=router.recalculate(start,end);

redraw(shape);
Connector K >———ConnectorRouter
route() O Shape recalculate(Pt, Pt)

T

StraightRouter ArcRouter ManhattanRouter

Shape recalculate(Pt, Pt) Shape recalculate(Pt, Pt) Shape recalculate(Pt, Pt)

Software Design Pattern

137

]

Benhavioral Patterns: Strategy

“open-closed principle”.

Figure demonstrates how this is
routinely achieved - encapsulate
interface details in a base class,
and bury implementation details
in derived classes. Clients can
then couple themselves to an

interface, and not have to experience the upheaval associated
with change: no impact when the number of derived classes
changes, and no impact when the implementation of a derived

class changes.

Sehavioral Patterns: Strategy

Problem (Cont...)

program 1o an interface, not an implementation Ij

@ One of the dominant strategies of object-oriented design is the

= '“': . open for exiension
h ™ = = 7| closed for modificaton
[-deSamethngy)

trdoSomeshing()

rrdoSomething()

“Program to an interface, not an implementation”.
C(lients should prefer the “additional level of indirection” that an

interface (or an abstract base class) affords. The interface captures the
abstraction (i.e. the “useful fiction”) the client wants to exercise, and

A generic value of the software community for years has been,
“maximize cohesion and minimize coupling”. The object-oriented
design approach shown in figure is all about minimizing coupling. Since
the client is coupled only to an abstraction (i.e. a useful fiction), and
not a particular realization of that abstraction, the client could be said
to be practicing “abstract coupling” . an object-oriented variant of the
more generic exhortation “minimize coupling”.

4 A more popular characterization of this “abstract coupling” principle is

the implementations of that interface are effectively hidden.

Software Design Pattern

138

Behavioral Patterns: Strategy

‘Rules of Thumb

Strategy is like Template Method except in its granularity.
State is like Strategy except in its intent.

Strategy lets you change the guts of an object. Decorator lets you
change the skin.

State, Strategy, Bridge (and to some degree Adapter) have similar
solution structures. They all share elements of the *handle/body’
idiom. They differ in intent - that is, they solve different problems.
@ Strategy has 2 different implementations, the first is similar to
State. The difference is in binding times (Strategy is a bind-once
pattern, whereas State is more dynamic).

Strategy objects often make good Flyweights.

® @ @ e

Behavioral Patterns: Strategy

Known Uses

#Use the Strategy pattern when...

= Many related classes differ only in their
behavior.

= There are different algorithms for a given
purpose, and the selection criteria can be
codified.

= The algorithm uses data to which the client
should not have access.

Software Design Pattern 139

Behavioral Patterns: Template Method

‘UML: 7emplate Method

AbstractClass
5:imitive-0peration1 ()
+TemplateMethod() 4 — — — — —)
+PrimitiveOperationi() PrimitiveOperation2()
+PrimitiveOperation2() .

]

ConcreteClass

+PrimitiveOperationi()
+PrimitiveOperation2()

| -
Fraquency of use: NI modium

Behavioral Patterns: Template Method

Intent

Define the skeleton of an algorithm in
an operation, deferring some steps to
client subclasses. Template Method lets
subclasses redefine certain steps of an
algorithm without changing the
algorithm’s structure.

@ Base class declares algorithm
‘placeholders’, and derived classes
implement the placeholders.

Software Design Pattern 140

Behavioral Patterns: Template Method

‘Role

#®The Template Method pattern enables

algorithms to defer certain steps to
subclasses. The structure of the
algorithm does not change, but small
well-defined parts of its operation are

handled elsewhere.

Behavioral Patterns: Template Method

1

Structure

:;‘

FrameworkClass

rstepTwol)

HstepTwo()

SortAlgorithm

stepOne(); Client pyw—
+templateMethod() |- — - stepTwo(); rsor) L DVDCBSIB(I;’M].
+stepOne() stepThree(); i tcomparey() mlmu""mawm_
+stepTwo() HreturnArray()
+stepThree() 4 4\. ¥l

I I SortAscending SortDescending
ApplicationClassOne ApplicationClassTwo
[+#compare() +#compare()

The implementation of template_method() is: call step_one(), call
step_two(), and call step_three(). step_two() is a “hook” method — a
placeholder. It is declared in the base class, and then defined in derived
classes. Frameworks (large scale reuse infrastructures) use Template
Method a lot. All reusable code is defined in the framework’s base
classes, and then clients of the framework are free to define
customizations by creating derived classes as needed.

Software Design Pattern

141

Behavioral Patterns: Template Method

‘Example

4 The Template Method defines
a skeleton of an algorithm in
an operation, and defers some
steps to subclasses. Home
builders use the Template
Method when developing a
new subdivision. A typical

subdivision consists of a ?

Basic structure

limited number of floor plans

with different variations
available for each. Within a

floor plan, the foundation, o (o
framing, plumbing, and wiring w .

will be identical for each

house. Variation is introduced Add front stairs Add flags

in the later stages of Add front stairs,

i fl dt
construction to produce a ags and lower
wider variety of models.

Behavioral Patterns: Tempilate Method

Problem

#® Two different components have
significant similarities, but demonstrate
no reuse of common interface or
implementation. If a change common to
both components becomes necessary,
duplicate effort must be expended.

Software Design Pattern

142

Behavioral Patterns: Template Method

Discussion

@ The component designer decides which steps of an
algorithm are invariant (or standard), and which are
variant (or customizable). The invariant steps are
implemented in an abstract base class, while the
variant steps are either given a default
implementation, or no implementation at all. The
variant steps represent “hooks”, or “placeholders”,
that can, or must, be supplied by the component’s
client in a concrete derived class.

@ The component designer mandates the required
steps of an algorithm, and the ordering of the steps,
but allows the component client to extend or replace
some number of these steps.

Behavioral Patterns: Template Method

‘Discussion (Cont...)

@ Template Method is used prominently in frameworks.
Each framework implements the invariant pieces of a
domain’s architecture, and defines “placeholders” for
all necessary or interesting client customization
options. In so doing, the framework becomes the
“center of the universe”, and the client
customizations are simply “the third rock from the
sun”. This inverted control structure has been
affectionately labelled “the Hollywood principle” -
“don't call us, we'll call you”.

Software Design Pattern

143

Behavioral Patterns: Template Method

‘Rules of Thumb

@ Strategy is like Template Method except in its
granularity.

Template Method uses inheritance to vary part
of an algorithm. Strategy uses delegation to
vary the entire algorithm.

@ Strategy modifies the logic of individual objects.
Template Method modifies the logic of an entire
class.

@ Factory Method is a specialization of Template
Method.

Behavioral Patterns: Template Method

‘Known Uses

#Use the Template Method pattern
when...

= Common behavior can be factored out of
an algorithm.

= The behavior varies according to the type
of a subclass.

Software Design Pattern 144

sehavioral Patterns: Visitor

"UML: Visitor

Visitor

Client

+VisitConcreteElementafin ConcreteElementA
HVsitCor 1 G B |

ConcreteVisitor2

+VisitConcreteElementAlin ConcreteElementA)
L+ VisitC El tB(in Concr B)

ConcreteVisitor1

+VisitConcrateElementAlin ConcrateElamantA)
PV E WB(in G El B)

b Element
-
[+Acceplfin visitor | Visitor)
ConcreteElementA Concral teElementB
[+Accept(in visitor VISlW}/' +Accept{in visitor : Vistor) ,
+OperationA) s [+OperationB() s
g

-
-
s

visitor VisitConcreleElementAl this) ﬁ visitor. VisitConcreteElementB(this) Ij

1 2 3 4% B
Frequency of use. I low

sehavioral Patterns: Visitor

Intent

Represent an operation to be performed on
the elements of an object structure. Visitor
lets you define a new operation without
changing the classes of the elements on
which it operates.

The classic technique for recovering lost type
information.

Do the right thing based on the type of two
objects.

Double dispatch

Software Design Pattern 145

Behavioral Patterns: Visitor

‘Role

The Visitor pattern defines and performs new
operations on all the elements of an existing
structure, without altering its classes.

sSehavioral Patterns: Visitor

‘Structure

The Element hierarchy is instrumented with a “universal method
adapter”. The implementation of accept() in each Element derived class is
always the same. But — it cannot be moved to the Element base class and
inherited by all derived classes because a reference to this in the Element
class always maps to the base type Element.

«interfaces
Visitor
«interface» +uisit(in & : ElementOne)
Element +visit(in @ : ElementTwo)

A
ElementOne ElementTwo Sinterface:VistorOne

[+wisilfin e - Eismeﬂl'Om)
+visil(in & : ElementTwo)
accept(in v : Visitor) \

T 1

The concrete types of the
. Element and Visitor objects have
v.visit{this); been "recovered”. Perform the work
apropriate for their pair of types

Software Design Pattern 146

sehavioral Patterns: Visitor

‘Structure (Cont...)

@ When the
polymorphic
. First[] elements = {new FirstOne(), ... |
ﬁrstDlspatch() Second[] operations = [new SecondThree(), .. };
h d . ” d for each element
method is called on slements].firstDispatch{ operationsf0])
an abstract First
T

object, the concrete ! -
type of that object is Client
“recovered”. When OO o T S)
the polymorphic o

. [1]
secondDispatch() Firstono Firsttwo | [FirstThreo
method is called on Secand __ y

[first | Secon
an abstract Second [FsecondDispalch(in 1 : FIrstOne) .
- - HsecondDispatch(in f : FirstTwo)
DbJEC:t, ‘I‘tS COF’ICI’E;? *monubnpeldglnf : FiratThrea)
type is "recovered .
The application I I
. . SecondOne SecondTwo SecondThree

functionality If dothe right thing based on

- B —— L. — — | /f the type of two objects:
appropriate for this L R I Frsion and SecondThree
pair of types can now sacondDispatchfin f- FirstThee)

be exercised.

This pattern can be
observed in the operation
of a taxi company. When
a person calls a taxi
company (accepting a
visitor), the company
dispatches a cab to the
customer. Upon entering
the taxi the customer, or

Cab Company Dispatcher

Visitor. | I - Jsendcab
IsItor, 1S ﬂC-) onger in (AcceptAVisitor) Enter (Cah)
control of his or her own VisitCustomer)
transportation, the taxi
Transport{ Customer

(driver) is.

Customer Taxi
Ohject Struchmre s List of Customers) (Conete Elanent of Customer List) (Visitor)

Software Design Pattern

147

Behavioral Patterns: Visitor

Problem

#Many distinct and unrelated operations
need to be performed on node objects
in a heterogeneous aggregate
structure. You want to avoid “polluting”
the node classes with these operations.
And, you don’t want to have to query
the type of each node and cast the
pointer to the correct type before
performing the desired operation.

sehavioral Patterns: Visitor

Discussion

Visitor's primary purpose is to abstract functionality that can be
applied to an aggregate hierarchy of “element” objects. The
approach encourages designing lightweight Element classes -
because processing functionality is removed from their list of
responsibilities. New functionality can easily be added to the
original inheritance hierarchy by creating a new Visitor subclass.

Visitor implements “double dispatch”. OO messages routinely
manifest “single dispatch” - the operation that is executed depends
on: the name of the request, and the type of the receiver. In
“double dispatch”, the operation executed depends on: the name
of the request, and the type of TWO receivers (the type of the
Visitor and the type of the element it visits).

Software Design Pattern

148

sehavioral Patterns: Visitor

‘Discussion (Cont...)

The implementation proceeds as follows. Create a
Visitor class hierarchy that defines a pure virtual visit()
method in the abstract base class for each concrete
derived class in the aggregate node hierarchy. Each
visit() method accepts a single argument - a pointer or
reference to an original Element derived class.

@ Each operation to be supported is modeled with a
concrete derived class of the Visitor hierarchy. The
visit() methods declared in the Visitor base class are
now defined in each derived subclass by allocating the
“type query and cast” code in the original

implementation to the appropriate overloaded visit()
method.

Behavioral Patterns: Visitor

Discussion (Cont...)

Add a single pure virtual accept() method to the base class of the
Element hierarchy. accept() is defined to receive a single argument
- a pointer or reference to the abstract base class of the Visitor
hierarchy.

Each concrete derived class of the Element hierarchy implements
the accept() method by simply calling the visit() method on the
concrete derived instance of the Visitor hierarchy that it was
passed, passing its “this” pointer as the sole argument.

@ Everything for “elements” and “visitors” is now set-up. When the
client needs an operation to be performed, (s)he creates an
instance of the Vistor object, calls the accept() method on each
Element object, and passes the Visitor object.

Software Design Pattern 149

sehavioral Patterns: Visitor

‘Discussion (Cont...)

@ The accept() method causes flow of control to find the correct
Element subclass. Then when the visit() method is invoked, flow of
control is vectored to the correct Visitor subclass. accept() dispatch
plus visit() dispatch equals double dispatch.

@ The Visitor pattern makes adding new operations (or utilities) easy
- simply add a new Visitor derived class. But, if the subclasses in
the aggregate node hierarchy are not stable, keeping the Visitor
subclasses in sync requires a prohibitive amount of effort.

An acknowledged objection to the Visitor pattern is that is
represents a regression to functional decomposition - separate the
algorithms from the data structures. While this is a legitimate
interpretation, perhaps a better perspective/rationale is the goal of
promoting non-traditional behavior to full object status.

sehavioral Patterns: Visitor

‘Rules of Thumb

@ The abstract syntax tree of Interpreter is a Composite
(therefore Iterator and Visitor are also applicable).

@ Iterator can traverse a Composite. Visitor can apply an
operation over a Composite.

@ The Visitor pattern is like a more powerful Command
pattern because the visitor may initiate whatever is
appropriate for the kind of object it encounters.

@ The Visitor pattern is the classic technique for

recovering lost type information without resorting to
dynamic casts.

Software Design Pattern 150

(=

Behavioral Patterns: Visitor

Known Uses

@ Use the Visitor pattern when...

= You need the flexibility to define new operations
over time.

= There is a need perform operations that depend
on concrete classes of an object structure, and the
structure may contain classes of objects with
differing interfaces.

= Distinct and unrelated operations must be
performed on objects in an object structure, and
you want to avoid distributing/replicating similar
operations in their classes

= The classes defining the object structure rarely
change, but new operations may be added every
once in a while.

Category Patterns Frequency of use

Abstract Factory
Builder

Factory Method
Prototype
Singleton

Creational

Adapter
Bridge
Composite
Decorator
Facade
Proxy

Structural

Chain of Responsibility
Command

Flyweight
Interpreter
Iterator

Mediator
Memento
Observer

State

Strategy
Template Method
Visitor

Behavioral

Software Design Pattern 151

Patterns Relationship

DesignPatternsSpecificto an Application m

Domain

DesignPatterns foflypical Sofiware Prohlems

Ritediaton -~ fFacade]

Basic DesigiPatterns andlechniques

U TTTTTTrrmm s amssamae 'Y 5 K T B 1]

— Woses T mitssohation ;. T P Varantof Xuses ¥ inits solntion ;
_oCIITILE \
""" Vit similarto ¥ __ __)

Patterns e ey oo me o =

Relationship+ + -

(Cont.) =2 = T=-{=
'

/ / can be combined with
uses uses every nlhler patiem

Model View
oot =

uses

152

Software Design Pattern

~Golden Rules of Design Patterns

@ Client should always call the abstraction (interface)
and not the exact implementation.

@ Future changes should not impact the existing
system.

Change always what is changing.

Have loose coupling
= Inheritance (Very coupled)
= Composition
= Aggregation
= Association
= Dependency
= Realization (Least couple)

Today
there are more
patterns than in the
GoF book; learn about
them as well.

Shoot for practical
extensibility. Don't
provide hypothetical

generality; be extensible

in ways that matter.

Go for simplicity
and don't become over-excited.
If you can come up witha
simpler solution without using a
pattern, then go for it.

R .nhavd

=~ Ralph
telm

Johnson

Patterns are
tools not rules - they
need to be tweaked and
adapted to
your problem.

1
John Vlissides

AT ey (4 Erich Gamma

Software Design Pattern

153

